• Title/Summary/Keyword: Correction System

Search Result 2,540, Processing Time 0.028 seconds

Wind Tunnel Test of a Canard Airplane

  • Chung, Jin-Deog;Cho, Ta-Hwan;Lee, Jang-Yeon;Sun, Bong-Zoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.125-131
    • /
    • 2002
  • A low speed wind tunnel test was conducted for a canard airplane model in KARI LSWT. The purpose of the presented paper is to investigate the proper testing approach to correct tare precisely and the interference effects for the canard models which has 21% of canard-to-wing area ratio. Most of tests were performed with image system installation for various elevator deflection conditions at the flexed canard incidence angles. To evaluate the effectiveness of the image system, the obtained correction quantity at an zero elevator setting condition with image system was applied to the rest of elevator deflections and compared with the acquired results for all elevator deflections with image system. Test result showed that the amount of correction quantities were strongly dependent on the elevator deflections, and the difference in aerodynamic coefficients for two approaches was gradually amplified as the elevator deflection angles increased. An adoption of the image system was strongly recommended for the higher canard-to -wing area ratio model, if a proper level of accuracy was required.

The Lens Aberration Correction Method for Laser Precision Machining in Machine Vision System (머신비전 시스템에서 레이저 정밀 가공을 위한 렌즈 수차 보정 방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.301-306
    • /
    • 2012
  • We propose a method for accurate image acquisition in a machine vision system in the present study. The most important feature is required by the various lenses to implement real and of the same high quality image-forming optical role. The input of the machine vision system, however, is generated due to the aberration of the lens distortion. Transformation defines the relationship between the real-world coordinate system and the image coordinate system to solve these problems, a mapping function that matrix operations by calculating the distance between two coordinates to specify the exact location. Tolerance Focus Lens caused by the lens aberration correction processing to Galvanometer laser precision machining operations can be improved. Aberration of the aspheric lens has a two-dimensional shape of the curve, but the existing lens correction to linear time-consuming calibration methods by examining a large number of points the problem. How to apply the Bilinear interpolation is proposed in order to reduce the machining error that occurs due to the aberration of the lens processing equipment.

Real-time bias correction of Beaslesan dual-pol radar rain rate using the dual Kalman filter (듀얼칼만필터를 이용한 이중편파 레이더 강우의 실시간 편의보정)

  • Na, Wooyoung;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.201-214
    • /
    • 2020
  • This study proposes a bias correction method of dual-pol radar rain rate in real time using the dual Kalman filter. Unlike the conventional Kalman filter, the dual Kalman filter predicts state variables with two systems (state estimation system and model estimation system) at the same time. Bias of rain rate is corrected by applying the bias correction ratio to the rain rate estimate. The bias correction ratio is predicted from the state-space model of the dual Kalman filter. This method is applied to a storm event with long duration occurred in July 2016. Most of the bias correction ratios are estimated between 1 and 2, which indicates that the radar rain rate is underestimated than the ground rain rate. The AR (1) model is found to be appropriate for explaining the time series of the bias correction ratio. The time series of the bias correction ratio predicted by the dual Kalman filter shows a similar tendency to that of observation data. As the variability of the bias correction increases, the dual Kalman filter has better prediction performance than the Kalman filter. This study shows that the dual Kalman filter can be applied to the bias correction of radar rain rate, especially for long and heavy storm events.

Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing (육상 원격탐사에서 광학영상의 대기보정)

  • Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1299-1312
    • /
    • 2019
  • As land remote sensing applications are expanding to the extraction of quantitative information, the importance of atmospheric correction is increasing. Considering the difficulty of atmospheric correction for land images, it should be applied when it is necessary. The quantitative information extraction and time-series analysis on biophysical variables in land surfaces are two major applications that need atmospheric correction. Atmospheric aerosol content and column water vapor, which are very dynamic in spatial and temporal domain, are the most influential elements and obstacles in retrieving accurate surface reflectance. It is difficult to obtain aerosol and water vapor data that have suitable spatio-temporal scale for high- and medium-resolution multispectral imagery. Selection of atmospheric correction method should be based on the availability of appropriate aerosol and water vapor data. Most atmospheric correction of land imagery assumes the Lambertian surface, which is not the case for most natural surfaces. Further BRDF correction should be considered to remove or reduce the anisotropic effects caused by different sun and viewing angles. The atmospheric correction methods of optical imagery over land will be enhanced to meet the need of quantitative remote sensing. Further, imaging sensor system may include pertinent spectral bands that can help to extract atmospheric data simultaneously.

A Spelling Error Correction Model in Korean Using a Correction Dictionary and a Newspaper Corpus (교정사전과 신문기사 말뭉치를 이용한 한국어 철자 오류 교정 모델)

  • Lee, Se-Hee;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.427-434
    • /
    • 2009
  • With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) applications because they decrease the readability of texts. To resolve this problem, we propose a spelling error correction model using a spelling error correction dictionary and a newspaper corpus. The proposed model has the advantage that the cost of data construction are not high because it uses a newspaper corpus, which we can easily obtain, as a training corpus. In addition, the proposed model has an advantage that additional external modules such as a morphological analyzer and a word-spacing error correction system are not required because it uses a simple string matching method based on a correction dictionary. In the experiments with a newspaper corpus and a short message corpus collected from real mobile phones, the proposed model has been shown good performances (a miss-correction rate of 7.3%, a F1-measure of 97.3%, and a false positive rate of 1.1%) in the various evaluation measures.

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

A Novel PCCM Voltage-Fed Single-Stage Power Factor Correction Full-Bridge Battery Charger

  • Zhang, Taizhi;Lu, Zhipeng;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.872-882
    • /
    • 2016
  • A novel pseudo-continuous conduction mode (PCCM) voltage-fed single-stage power factor correction (PFC) full-bridge battery charger is proposed in this paper. By connecting a freewheeling transistor in parallel with an input inductor, the PFC cell can operate in the PCCM with a constant duty ratio. Thus, the dc/dc stage can be designed using this constant duty ratio and the restriction on the duty ratio of the PFC cell is eliminated. As a result, the input current distortion is less and the dc bus voltage becomes controllable over the wide output power range of the battery charger. Moreover, the operation principle of the dc/dc stage is designed to be similar to that of a conventional phase-shifted full-bridge converter. Therefore, it is easy to implement. In this paper, the operation of the new converter is explained, and the design considerations of the controller and key parameters are presented. Simulation and experimental results obtained from a 1 kW prototype are given to confirm the operation of the proposed converter.

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.

Context Based Real-time Korean Writing Correction for Foreigners (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun Ah
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1087-1093
    • /
    • 2017
  • Educating foreigners in Korean language is attracting increasing attention with the growing number of foreigners who want to learn Korean or want to reside in Korea. Existing spell checkers mostly focus on native Korean speakers, so they are inappropriate for foreigners. In this paper, we propose a correction method for the Korean language that reflects the contextual characteristics of Korean and writing characteristics of foreigners. Our method can extract frequently used expressions by Koreans by constructing syllable reverse-index for eojeol bi-gram extracted from corpus as correction candidates, and generate ranked Korean corrections for foreigners with upgraded edit distance calculation. Our system provides a user interface based on keyboard hooking, so a user can easily use the correction system along with other applications. Our system improves the detection rate for foreign language users by about 45% compared to other systems in foreign language writing environments. This will help foreign users to judge and correct their own writing errors.

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.