DOI QR코드

DOI QR Code

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Received : 2019.10.14
  • Accepted : 2019.11.22
  • Published : 2019.11.30

Abstract

The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

Keywords

References

  1. E. Foxlin, "Pedestrian tracking with shoe-mounted inertial sensors", IEEE Comput. Graph. Appl., Vol. 25, No. 46, pp. 38-49, 2005. https://doi.org/10.1109/MCG.2005.140
  2. R. Bajaj, S. L. Ranaweera, and D. P. Agrawal. "GPS: location-tracking technology", Computer, Vol. 35, No. 4, pp. 92-94, 2002. https://doi.org/10.1109/MC.2002.993780
  3. S. Godha, G. Lachapelle, and M. E. Cannon. "Integrated GPS/INS system for pedestrian navigation in a signal degraded environment", Proc. ION GNSS. pp. 2151-2164, TX, USA, 2006
  4. Q. Wang, X. Chen, R. Chen, Y, Chen, and X. Zhang, "Electromyography-based locomotion pattern recognition and personal positioning toward improved context-awareness applications", IEEE Trans. Syst. Man Cybern. Syst., Vol. 43, No. 5, pp. 1216-1227, 2013. https://doi.org/10.1109/TSMC.2013.2256857
  5. A. Brajdic and R. Harle, "Walk detection and step counting on unconstrained smartphones", Proc. 2013 ACM Int. Jt. Conf. on Pervasive Ubiquitous Comput., pp. 225-234, Zurich, Switzerland, 2013.
  6. J. K. Lee, E. J. Park, and S. N. Robinovitch, "Estimation of attitude and external acceleration using inertial sensor measurement during various dynamic conditions", IEEE Trans. Instrum. Meas., Vol. 61, No. 8, pp. 2262-2273, 2012. https://doi.org/10.1109/TIM.2012.2187245
  7. R. Harle, "A survey of indoor inertial positioning systems for pedestrians", IEEE Commun. Surv. Tutor., Vol. 15, No. 3, pp. 1281-1293, 2013. https://doi.org/10.1109/SURV.2012.121912.00075
  8. C. Fischer, P. Talkad Sukumar, and M. Hazas, "Tutorial: implementing a pedestrian tracker using inertial sensors", IEEE Pervasive Comput., Vol. 12, No. 2, pp. 17-27, 2013. https://doi.org/10.1109/MPRV.2012.16
  9. X. Tian, J. Chen, Y. Han, J. Shang, and N. Li, "Pedestrian navigation system using MEMS sensors for heading drift and altitude error correction", Sens. Rev., Vol. 37 No. 3, pp. 270-281, 2017. https://doi.org/10.1108/SR-07-2016-0125
  10. A. Norrdine, Z. Kasmi, and J. Blankenbach, "Step detection for ZUPT-aided inertial pedestrian navigation system using foot-mounted permanent magnet", IEEE Sens. J., Vol. 16, No. 17, pp. 6766-6773, 2016. https://doi.org/10.1109/JSEN.2016.2585599
  11. A. Bahillo, I. Angulo, E. Onieva, A. Perallos, and P. Fernandez, "Low-cost bluetooth foot-mounted IMU for pedestrian tracking in industrial environments", 2015 IEEE Int. Conf. on Ind. Technol. (ICIT), pp. 3430-3434, Seville, Spain, 2015.
  12. J. K. Lee, "A two-step Kalman/complementary filter for estimation of vertical position using an IMU-barometer system", J. Sens. Sci. Technol., Vo. 25, No. 3, pp.202-207, 2016. https://doi.org/10.5369/JSST.2016.25.3.202
  13. J. Borenstein and L. Ojeda, "Heuristic drift elimination for personnel tracking systems", J. Navig., Vol. 63, No. 4, pp. 591-606, 2010. https://doi.org/10.1017/S0373463310000184
  14. A. R. Jimenez, F. Seco, F. Zampella, J. C. Prieto, and J. Guevara, "Improved heuristic drift elimination (iHDE) for pedestrian navigation in complex buildings", 2011 Int. Conf. on Indoor Position. Indoor Navig., Guimaraes, Portugal, pp. 1-8, 2011.
  15. A. R. Jimenez, F. Seco, F. Zampella, J. C. Prieto, and J. Guevara, "Improved heuristic drift elimination with magnetically-aided dominant directions (MiHDE) for pedestrian navigation in complex buildings", J. Locat. Based Serv., Vol. 6, No. 3, pp. 186-210, 2012. https://doi.org/10.1080/17489725.2012.687779
  16. H. J. Ju, M. S. Lee, C. G. Park, S. Lee, and S. Park, "Advanced heuristic drift elimination for indoor pedestrian navigation", 2014 Int. Conf/ on Indoor Position. Indoor Navig. (IPIN), Busan, Korea, pp. 729-732, 2014.
  17. K. Abdulrahim, C. Hide, T. Moore, and C. Hill, "Aiding low cost inertial navigation with building heading for pedestrian navigation", J. Navig., Vol. 64, No. 2, pp. 219-233, 2011. https://doi.org/10.1017/S0373463310000573
  18. H. Ju, S. Y. Park, and C. G. Park, "A smartphone-based pedestrian dead reckoning system with multiple virtual tracking for indoor navigation", IEEE Sens. J., Vol. 18, No. 16, pp. 6756-6764, 2018. https://doi.org/10.1109/jsen.2018.2847356
  19. Q. Fan, H. Zhang, P. Pan, X. Zhuang, J. Jia, P. Zhang, Z. Zhao, G. Zhu, and Y. Tang, "Improved pedestrian dead reckoning based on a robust adaptive Kalman filter for indoor inertial location system", Sensors, Vol. 19, No. 2, pp. 294(1)-294(21), 2019. https://doi.org/10.3390/s19020294
  20. J. C. Alvarez, D. Alvarez, A. Lopez, and R. C. Gonzalez, "Pedestrian navigation based on a waist-worn inertial sensor", Sensors, Vol. 12, No. 8, pp.10536-10549, 2012. https://doi.org/10.3390/s120810536
  21. M. N. Muhammad, Z. Salcic, and K. I. Wang, "Indoor pedestrian tracking using consumer-grade inertial sensors with PZTD heading correction", IEEE Sensors J., Vol. 18, No. 12, pp. 5164-5172, 2018. https://doi.org/10.1109/jsen.2018.2833118
  22. L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, "LANDMARC: indoor location sensing using active RFID", Wirel. Netw., Vol. 10, No. 6, pp. 701-710, 2004. https://doi.org/10.1023/B:WINE.0000044029.06344.dd
  23. A. Ward, A. Jones, and A. Hopper, "A new location technique for the active office", IEEE Pers. Commun., Vol. 4, No. 5, pp. 42-47, 1997. https://doi.org/10.1109/98.626982
  24. J. Hallberg, M. Nilsson, and K. Synnes, "Positioning with bluetooth", 10th Int. Conf. on Telecommun. ICT 2003, pp. 954-958, Papeete, French Polynesia, 2003.
  25. A. R. Jimenez, F. Seco, J. C. Prieto, and J. Guevara, "Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU", 2010 7th Workshop on Position. Navig. Commun. pp. 135-143, Dresden, Germany, 2010.
  26. J. K. Lee, "A parallel attitude-heading Kalman filter without state-augmentation of model-based disturbance components", IEEE Trans. Instrum. Meas., Vol. 68, No. 7, pp. 2668-2670, 2019. https://doi.org/10.1109/tim.2019.2906417
  27. J. W. Song and C. G. Park, "Enhanced pedestrian navigation based on course angle error estimation using cascaded Kalman filters", Sensors, Vol. 18, No. 4, pp. 1281(1)-1281(20), 2018. https://doi.org/10.3390/s18041281