Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.6.3.12

Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing  

Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
Publication Information
Korean Journal of Remote Sensing / v.35, no.6_3, 2019 , pp. 1299-1312 More about this Journal
Abstract
As land remote sensing applications are expanding to the extraction of quantitative information, the importance of atmospheric correction is increasing. Considering the difficulty of atmospheric correction for land images, it should be applied when it is necessary. The quantitative information extraction and time-series analysis on biophysical variables in land surfaces are two major applications that need atmospheric correction. Atmospheric aerosol content and column water vapor, which are very dynamic in spatial and temporal domain, are the most influential elements and obstacles in retrieving accurate surface reflectance. It is difficult to obtain aerosol and water vapor data that have suitable spatio-temporal scale for high- and medium-resolution multispectral imagery. Selection of atmospheric correction method should be based on the availability of appropriate aerosol and water vapor data. Most atmospheric correction of land imagery assumes the Lambertian surface, which is not the case for most natural surfaces. Further BRDF correction should be considered to remove or reduce the anisotropic effects caused by different sun and viewing angles. The atmospheric correction methods of optical imagery over land will be enhanced to meet the need of quantitative remote sensing. Further, imaging sensor system may include pertinent spectral bands that can help to extract atmospheric data simultaneously.
Keywords
atmospheric correction; land remote sensing; aerosol; surface reflectance; NDVI;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lee, K. S. and J. S. Yoon, 1997. Radiometric Correction of Terrain Effects for SPOT and Landsat TM Imagery in Mountainous Forest Area, Korean Journal of Remote Sensing, 13(3): 277-292.   DOI
2 Lee, S., M. Choi, J. Kim, M. Kim, and H. Lim. 2017. Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data, Korean Journal of Remote Sensing, 33(6-1): 961-970 (in Korean with English abstract).   DOI
3 Liang, S., H. Fang, and M. Chen, 2001. Atmospheric Correction of Landsat ETM+ Land Surface Imagery - Part I: Methods, IEEE Transaction on Geoscience and Remote Sensing, 39(11): 2490-2498.   DOI
4 Kaufman, Y. J. and B. C. Gao, 1992. Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE Transaction on Geoscience and Remote Sensing, 30(5): 871-884.   DOI
5 Chavez, P.S., 1996. Image-based atmospheric correc - tions-revisited and improved, Photogrammetric Engineering and Remote Sensing, 62(9): 1025-1035.
6 Cracknell, A. P. and L. W. B. Hayes, 1991. Introduction to Remote Sensing, Taylor & Francis, London, U.K.
7 Del Pozo, S., P. Rodriguez-Gonzalvez, D. Hernandez-Lopez, and B. Felipe-Garcia, 2014. Vicarious radiometric calibration of a multispectral camera on board an unmanned aerial system, Remote Sensing, 6(3): 1918-1937.   DOI
8 Eidenshink, J. C., 1992. The 1990 Conterminous U.S. AVHRR Data Set, Photogrammetric Engineering and Remote Sensing, 58(6): 809-813.
9 Fensholt, R., I. Sandholt, S. Stisen, and C. Tucker, 2006. Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor, Remote Sensing of Environment, 101(2): 212-229.   DOI
10 Frantz, D., M. Stellmes, and P. Hostert, 2019. Global MODIS Water Vapor Database for the Operational Atmospheric Correction of Historic and Recent Landsat Imagery, Remote Sensing, 11(3): 257.   DOI
11 Gao, B. and Y. J. Kaufman, 1990. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data, Journal of Geophysical Research, 95(4): 3549-3564.   DOI
12 Ahn, H. Y., S. I. Na, C. W. Park, K. H. So, and K. D. Lee, 2018. Atmospheric Correction Effectiveness Analysis of Reflectance and NDVI Using Multispectral Satellite Image, Korean Journal of Remote Sensing, 34(6): 981-996 (in Korean with English abstract).   DOI
13 Gordon, H. R. and D. K. Clark, 1981. Clear water radiances for atmospheric correction of coastal zone color scanner imagery, Applied Optics, 20(24): 4175-4180.   DOI
14 Abelleyraa, D. and S. R. Veron, 2014. Comparison of different BRDF correction methods to generate daily normalized MODIS 250 m time series, Remote Sensing of Environment, 140: 46-59.   DOI
15 Manakos, I., K. Manevski, C. Kalaitzidis, and D. Edler, 2011. Comparison between atmospheric correction on the basis of Worldview-2 imagery and in situ spectroradiometric measurements, Proc. of 7th EARSeL SIG Imaging Spectroscopy workshop, Edinburgh, UK, Apr. 11-13, pp. 11-13.
16 Mannschatz, T., B. Pflug, E. Borg, K.-H. Feger, and P. Dietrich, 2014. Uncertainties of LAI estimation from satellite imaging due to atmospheric correction, Remote Sensing of Environment, 153: 24-39.   DOI
17 Mei, L., C. Zhao, G. de Leeuw, J. P. Burrows, V. Rozanov, H. Che, M. Vountas, A. Ladstatter-Weissenmayer, and X. Zhang, 2019. A Critical Evaluation of Deep Blue Algorithm Derived AVHRR Aerosol Product Over China, Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2018JD029929.
18 Rani, N., V. R. Mandla, and T. Singh, 2017. Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping, Geoscience Frontiers, 8: 797-808.   DOI
19 Yeom, J., K. Han, and Y. Kim, 2005. A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m data, Korean Journal of Remote Sensing, 21(6): 445-456 (in Korean with English abstract).   DOI
20 Na, S. I., C. W. Park, Y. K. Cheong, C. S. Kang, I. B. Choi, and K. D. Lee, 2016. Selection of Optimal Vegetation Indices for Estimation of Barley & Wheat Growth based on Remote Sensing: An Application of Unmanned Aerial Vehicle and Field Investigation Data, Korean Journal of Remote Sensing, 32(5): 483-497 (in Korean with English abstract).   DOI
21 Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney, and S. A. Macomber, 2001. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?, Remote Sensing of Environment, 75: 230-244.   DOI
22 Remer, L. A., Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R. R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, 2005. The MODIS aerosol algorithm, products, and validation, Journal of the Atmospheric Sciences, 62(4): 947-973.   DOI
23 Roujean. J. L., M. Leroy, and P. Y. Deschamps, 1992. A Bidirectional Reflectance Model of the Earth's Surface for the Correction of Remote Sensing Data, Journal of Geophysical Research, 97(D18): 20455-20468.   DOI
24 Schlapfer, D., C. C. Borel, J. Keller, and K. I. Itten, 1998. Atmospheric precorrected differential absorption technique to retrieve column water vapor, Remote Sensing of Environment, 65: 353-366.   DOI
25 Sturm, B., 1981. The atmospheric correction of remotely sensed data and the quantitative determination of suspended matter in marine water surface layers, In: A. P. Cracknell (ed), Remote Sensing in Meteorology, Oceanography and Hydrology, Ellis Horwood, U.K., pp. 163-197.
26 Goward, S. N., B. Markham, D. G. Dye, W. Dulaney, and J. Yang, 1991. Normalized difference vegetation index measurements from the advanced very high resolution radiometer, Remote Sensing of Environment, 35(2-3): 257-277.   DOI
27 Guo, Y., J. Senthilnath, W. Wu, X. Zhang, Z. Zeng, and H. Huang, 2019. Radiometric calibration for multispectral camera of different imaging conditions mounted on a UAV platform, Sustainability, 11(4): 978.   DOI
28 Wu, J., D. Wang, and M.E. Bauer, 2005. Image-based atmospheric correction of QuickBird imagery of Minnesota cropland, Remote Sensing of Environment, 99(3): 315-325.   DOI
29 Jethva, H., O. Torres, and Y. Yoshida, 2019. Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America, Atmospheric Measurement Techniques, 12(8): 4291-4307.   DOI
30 Bernard, E., C. Moulin, D. Ramon, D. Jolivet, J. Riedi, and J.-M. Nicolas, 2011. Description and validation of an AOT product over land at the 0.6 ${\mu}$m channel of the SEVIRI sensor onboard MSG, Atmospheric Measurement Techniques, 4: 2543-2565.   DOI
31 Kaufman, Y. J., D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectrora - diometer, Journal of Geophysical Research, 102(D14): 17051-17068.   DOI
32 Karpouzli, E. and T. Malthus, 2003. The empirical line method for the atmospheric correction of IKONOS imagery, International Journal of Remote Sensing, 24(5): 1143-1150.   DOI
33 Kim, S. H., S. J. Kang, J. H. Chi, and K. S. Lee, 2007. Absolute atmospheric correction procedure for EO-1 Hyperion data using MODTRAN code, Korean Journal of Remote Sensing, 23(1): 7-14.   DOI
34 Lee, H. S. and K. S. Lee, 2014. Analysis of Diurnal variation on canopy reflectance, Proc. of the Korean Society of Remote Sensing Fall Conference 2014, Jeju, Korea, Oct. 16-19. pp. 423-426 (in Korean).
35 Lee, H. S. and K. S. Lee, 2015. Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Satellite Images from Different Sensor Systems, Korean Journal of Remote Sensing, 31(4): 321-330.   DOI
36 Vermote, E. and A. Vermeulen. 1999. Atmospheric Correction Algorithm: Spectral reflectance (MOD09), Algorithm Technical Background Document, Version 4.0, NASA, Washington, D.C., USA.
37 Lee, H. S. and K. S. Lee, 2018. Operational Atmospheric Correction Method over Land Surfaces for GOCI Images, Korean Journal of Remote Sensing, 34(1): 127-139.   DOI
38 Lee, K. H. and Y. J. Kim, 2008. Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectance to Atmospheric Aerosol Properties, Korean Journal of Remote Sensing, 24(6): 559-569 (in Korean with English abstract).   DOI
39 Vermote, E. and N. El Saleous, 2006. Operational Atmospheric Correction of MODIS Visible and Middle Infrared Land Surface Data in the Case of an Infinite Lambertian Target, In: Qu, J. J., W. Gao, M. Kafatos, R. E. Murphy, V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing: Vol. 1: Science and Instruments, Springer, Berlin, Heidelberg, Germany, pp. 123-153.
40 Vermote, E., N. El Saleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remer, J. C. Roger, and D. Tanre, 1997. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. Journal of Geophysical Research-Atmosphere, 102(D14): 17131-17141.   DOI
41 Wang, C. and S. W. Myint, 2015. A simplified empirical line correction method of radiometric calibration for small unmanned aircraft systemsbased remote sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 1876-1885.   DOI