• Title/Summary/Keyword: Corporation Concentration

Search Result 796, Processing Time 0.028 seconds

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Application of Newly PAC Selection Method Based on Economic Efficiency (경제성을 고려한 새로운 PAC 선정방법의 적용)

  • Kim, Young-Il;Bae, Byung-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1141-1147
    • /
    • 2006
  • In order to applicate a newly method for powdered activated carbon(PAC) selection based on economic efficiency, PAC adsorption tests were performed for removal of MIB and dissolved organic carbon(DOC) in drinking water supplies. The removal rate of MIB increased when the PAC dose increased. The Coal-based PACs were superior for adsorption of MIB compared to wood-based PACs. PAC adsorption of DOC and $UV_{254}$ were a little different for different PACs and types of raw water, but both were lower than adsorption of MIB. Among the tested PACs, the one called P-1000 was most effective for removal of MIB, DOC and $UV_{254}$. Most of the organics in the tested samples were proven by excitation emission matrix(EEM) results to be fulvic-like materials. Especially, fulvic-like materials, humic-like materials, and soluble microbial byproduct(SMP)-like materials decreased after contact with PAC. P-1000 which had the lowest MIB cost index(MCI) was selected as the optimum PAC for the target water. PAC efficiency and treatability, particle size and distribution, and the cost associated with PAC dosing for MIB removal according to DOC concentration should all be considered before making the final selection of the best PAC for the target water.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

HPLC-based Analysis of Biogenic Amines in Aging-Cheese (HPLC를 이용한 숙성치즈로부터 바이오제닉 아민 분석법 개발)

  • Park, Jong-Hyuk;Lee, Sang-Cheon;Moon, Hye-Jung;Oh, Jeon-Hui;Song, Gi-Bong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.187-191
    • /
    • 2016
  • Biogenic amines have been used as chemical indicators of fermented foods. So far, several chromatography methods have been developed to detect biogenic amines in foods. However, few methods have identified these compound in domestic cheese. We analyzed the biogenic amines (histamine dihydrochloride, tyramine hydrochloride, ${\beta}$-phenylethylamine hydrochloride, putrescine dihydrochloride, cadaverine, spermidine, tryptamine hydrochloride, ethanolamine hydrochloride and butylamine) in cheese by using HPLC. The calibration curves of the biogenic amines were found to be linear over the concentration range of 10-50 ppm with a correlation coefficient of above 0.99. The limit of detection (LOD) and limit of quantitation (LOQ) of the biogenic amines in the given order were 3.7 and 11.3 ppm, 3.4 and 10.4ppm, 3.4 and 10.3 ppm, 4.0 and 12.2 ppm, 3.4 and 10.4 ppm, 3.4 and 10.5 ppm, 3.5 and 10.7 ppm, 4.1 and 12.5 ppm, and 3.4 and 10.4 ppm, respectively. Recovery rates of the biogenic amines in the given order were 112, 104, 93, 108, 91, 102, 101, and 92%, respectively. The findings of this study suggest that HPLC is a suitable method for the determination of biogenic amines, thereby indicating its potential application in the quality control of aging cheese.

The Relationship between Water-Bloom and Distribution of Microorganisms That Inhibit the Growth of Cyanobacterium (Anabaena cylindrica) (수화와 시안세균(Anabaena cylindrica) 생장 억제 미생물 분포도의 상관관계)

  • Kim, Chul-Ho;Lee, Jung-Ho;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.188-193
    • /
    • 1998
  • The authors examined the variations of environmental factors, the distributions of cyanobacteria, heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica according to development and extinction of cyanobacterial bloom at a site in Daechung Dam reservoir. And certified the relationship between each other. Water temperature variated in a typical pattern. pH and concentrations of dissolved oxygen and chlorophylla was high in bloom period, and lowered with the decline of bloom. Phosphorus played as a growth-limiting factor at this study site. Total nitrogen concentration increased during blooming period, which indicated that nitrogen has been fixed by aquatic organisms such as cyanobacteria. Cyanobacteria distributed from June 17, and such cyanobacterial species as Anabaena spp., Aphanizomenon spp., Microcystis spp., Oscillatoria spp. and Phormidium spp. was detected during study period. Anabaena spp. distributed relatively highly distributed from July 23 to September 22, and disappeared completely at September 29. Heterotrophic bacterial and cyanobacterial populations varied inverse-proportionally. There was a relevancy between the variations of Anabaena spp., heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica. Microorganisms that inhibit the growth of Anabaena cylindrica distributed from early growth phase of Anabaena spp. population to immediately after the extinction of Anabaena spp. With the population of Anabaena cylindrica growth-inhibiting microorganisms decreasing, increases of heterotrophic bacterial population followed it. Thease results indicate that microorganisms have a part in the extinction of cyanobacterial bloom, especially at its destroying period.

  • PDF

Analysis of Fish Guild Compositions and Total Mercury Contents of Fish Tissues in Analysis in Mangyeong River. (만경강 중.상류의 어류 길드특성 및 어류 조직내 수은 함량 분석)

  • Park, Hyang-Mi;Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.172-182
    • /
    • 2009
  • This study was to analyze characteristics based on tolerance and trophic guilds and to determine the level of total mercury in tissues of sentinel species, Zacco platypus at 3 sampling sites of the Mangyeong River in 2007. Total sampled fishes were 26 species and the most dominant species was Zacco temminckii (47%). Fish community analysis was resulted that eveness index and diversity index showed low value at S1. However, diversity index and richness index at other sites showed high. According to various guilds analysis, relative abundance of sensitive species was 70% and 42% at S1 and S2, respectively. While sensitive species were decreased (1%) and tolerant species were increased (60%) at S3. It was mainly carried to the impacts of wastewater treatment plants near the location. Relative abundance of insectivore species was decreased from up (S1) to midstream area (S3). In addition, chemical water quality, based on analyses of BOD, COD, TP, TN, EC, MPN and SS concentration showed similar trends. Qualitative Habitat Evaluation Index (QHEI) was averaged 164, judged as "good" habitat condition. Average concentrations of total [Hg] was 146.9 ${\mu}g$ $kg^{-1}$. In the muscles of total [Hg] was the highest, and then followed by kidney, vertebrae, liver, and gills. According to FDA standards (500 ${\mu}g$ $kg^{-1}$) of Korea, total [Hg] has not affected to the individual fish health.

Nutritional Composition and in vitro Antioxidant Activities of Blueberry (Vaccinium ashei) Leaf (블루베리 잎의 영양성분 분석 및 항산화 활성)

  • Jeong, Hee-Rok;Jo, Yu-Na;Jeong, Ji-Hee;Kim, Hyeon-Ju;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.604-610
    • /
    • 2012
  • The nutritional composition and in vitro anti-oxidant activities of blueberry (Vaccinium ashei) leaf extract were investigated to examine their physiological characteristics. Calcium was the most abundant mineral. The principal free sugars were glucose, sucrose, maltose, and fructose. The amino acids were mainly composed of glutamic acid and aspartic acid. The fatty acids consisted mainly of 40.94% saturated fatty acid and 54.35% unsaturated fatty acid. In addition, the 112.64 mg% of vitamin C was analyzed as a natural anti-oxidant. Based on the bioactivity-guided isolation principle, the resulting ethanolic extracts from the blueberry leaf were divided into several fractions of n-hexane, chloroform, ethyl acetate, and water. The ethyl acetate fraction showed the greatest total phenolic content. The total phenolics and flavonoid were 50.51 mg of GAE /g and 13.09 mg%, respectively. The ABTS-radical-scavenging activity of the ethyl acetate fraction was 97.53% at a concentration of 500 ${\mu}g/mL$. The ferric-reducing anti-oxidant power of the ethyl acetate fraction increased in a dose-dependent manner. The results suggest that the ethyl acetate fraction of the blueberry leaf extract has good in vitro anti-oxidant activities and excellent nourishment, and can thus be useful food resources.

Performance Evaluation of a Portable GC for Real-time Monitoring of Volatile Organic Compounds (휘발성 유기화합물의 실시간 모니터링을 위한 휴대형 GC의 성능 평가)

  • You, Dong-Wook;Seon, Yeong-Sik;Oh, Jun-Sik;Yi, Bongyoon;Kim, Hyun Sik;Jung, Kwang-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.327-333
    • /
    • 2020
  • Performance of a portable GC that can be utilized for the real time determination of volatile organic compounds in air was evaluated. It employs purified/compressed ambient air as the carrier gas eliminating the need for high pressure gas tanks. The compact system with dimensions of 35 × 26 × 15 ㎤ and weight of 5 kg is powered by either a 24 V DC external adapter or battery pack. Chromatograms of the mixture sample including benzene, toluene, ethylbenzene, and oxylene at concentrations of 1 ppmv and 20 ppmv represent a good reproducibility: 3.79% and 0.48% relative standard deviations (RSDs) for peak area variations; 0.40% and 0.08% RSDs for retention times. The method detection limit was 0.09 ppmv. A 30 m long, 0.28 mm I.D. column operated at an optimal condition yielded a peak capacity of 61 with good resolution for a 10 min isothermal analysis. The relative standard deviations (RSD) of the peak area variations and retention times during consecutive measurements over 27 h were less than 2.4%RSD and 0.5%RSD, respectively. Thus, this instrument makes it suitable for continuous and field analysis of low-concentration VOC mixtures in the indoor/outdoor environment as well as the spillage accident of hazardous chemicals.

Association between Air Pollutant Levels and Medical Usage Rates of Environmental Disease in a General Residential Area (대기오염물질과 환경성 질환 관련 의료이용률과의 연관성 - 일반거주지역을 대상으로 -)

  • Park, Dong Yun;Lee, Chae Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.279-291
    • /
    • 2021
  • Objectives: This study investigated the association between air pollutant levels and medical usage rates for environmental disease in a general residential area during the period 2015-2017. Methods: Air pollutant (PM10, PM2.5, SO2, NO2, CO, O3) data were collected from Air-Korea. Medical usage data on environmental disease (asthma, allergic rhinitis, atopic dermatitis) for the period 2015-2017 in a general residential area in Gyeongsangnam-do Province were provided by the National Health Insurance Corporation. Pearson correlation analysis and multiple regression analysis were conducted to investigate the association between air pollutant levels and medical usage rates (SAS 9.4). In the multiple regression analysis, environmental disease was set as the dependent variable and air pollutants were set as independent variables and analyzed using the General Linear Model. Results: Except for PM2.5, the average concentration of air pollutants in the surveyed area was below than the air environment standards of Korea. NO2 was higher than Korea's national average, but CO was similar. The others were lower than the Korea's national average. The daily medical usage rates for environmental disease were 1.38‰ for asthma, 9.90‰ for allergic rhinitis, and 0.32‰ for atopic dermatitis. As a result of correlation analysis, PM10 and SO2, NO2 and CO were significantly correlated with asthma, PM10 and NO2 and CO were correlated with allergic rhinitis, and PM10 and PM2.5, SO2, NO2 and CO were correlated with atopic dermatitis. As a result of multiple regression analysis, PM10 and SO2 were found to have a higher effect on asthma, PM10 and NO2 on allergic rhinitis, and SO2 and NO2 on atopic dermatitis, compared to other air pollutants. Conclusion: According to these results, air pollutants such as PM10 and SO2 and NO2 were associated with the medical usage rates of environmental disease even in relatively low concentrations. Therefore, continuous monitoring will be required for general residential areas.

Expression of Heat Shock Protein 70 Gene and Body Color Changes in Non-biting Midge Larvae (Glyptotendipes tokunagai) Effected by O3 Treatment (오존(O3) 노출에 의한 조각깔따구(Glyptotendipes tokunagai)의 체색 변화 및 heat shock protein 70 발현 변화)

  • Kim, Won-Seok;Choi, Bohyung;Kim, Moon-Kyung;Chae, Seon Ha;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.324-330
    • /
    • 2020
  • Ozone (O3) is a general disinfectant to remove micro-pollutants in water treatment system. Previous studies have reported effect of ozone to bacteria and pathogens removal, but its effect to the relatively large organisms has little known. In this study, we investigated potential effects of ozone toxicity to the non-bite midge larvae (Glyptotendipes tokunagai) with accumulate mortality, coloration change and expression of heat shock protein 70 (HSP70). The accumulate mortality rate of G. tokunagai increased in a dose-time dependent manner and the highest mortality rate was observed to 75% at 30 minute of exposure duration with 2.0 ppm of ozone concentration. Exposure to ozone was a factor increasing body color of the larvae. The tendency of HSP70 mRNA expression showed up-regulation in ozone exposure at 20 minute. After that time, the expression of HSP70 in exposed group decreased to a similar level of control group. Our results clearly showed that ozone toxicity affects physical and molecular activity of G. tokunagai, implying the potential hazardous of ozone in the aquatic ecosystem including macroinvertebrates.