DOI QR코드

DOI QR Code

Expression of Heat Shock Protein 70 Gene and Body Color Changes in Non-biting Midge Larvae (Glyptotendipes tokunagai) Effected by O3 Treatment

오존(O3) 노출에 의한 조각깔따구(Glyptotendipes tokunagai)의 체색 변화 및 heat shock protein 70 발현 변화

  • Kim, Won-Seok (Department of Ocean Integrated Science, Chonnam National University) ;
  • Choi, Bohyung (Fisheries Science Institute, Chonnam National University) ;
  • Kim, Moon-Kyung (Institute of Health & Environment, Seoul National University) ;
  • Chae, Seon Ha (K-water Research Institute, Korea Water Resources Corporation) ;
  • Kwak, Ihn-Sil (Department of Ocean Integrated Science, Chonnam National University)
  • 김원석 (전남대학교 해양융합과학과) ;
  • 최보형 (전남대학교 수산과학연구소) ;
  • 김문경 (서울대학교 보건환경연구소) ;
  • 채선하 (K-water 연구원 물이용연구소) ;
  • 곽인실 (전남대학교 해양융합과학과)
  • Received : 2020.09.11
  • Accepted : 2020.12.08
  • Published : 2020.12.31

Abstract

Ozone (O3) is a general disinfectant to remove micro-pollutants in water treatment system. Previous studies have reported effect of ozone to bacteria and pathogens removal, but its effect to the relatively large organisms has little known. In this study, we investigated potential effects of ozone toxicity to the non-bite midge larvae (Glyptotendipes tokunagai) with accumulate mortality, coloration change and expression of heat shock protein 70 (HSP70). The accumulate mortality rate of G. tokunagai increased in a dose-time dependent manner and the highest mortality rate was observed to 75% at 30 minute of exposure duration with 2.0 ppm of ozone concentration. Exposure to ozone was a factor increasing body color of the larvae. The tendency of HSP70 mRNA expression showed up-regulation in ozone exposure at 20 minute. After that time, the expression of HSP70 in exposed group decreased to a similar level of control group. Our results clearly showed that ozone toxicity affects physical and molecular activity of G. tokunagai, implying the potential hazardous of ozone in the aquatic ecosystem including macroinvertebrates.

오존은 수돗물 정수장에서 이용되는 소독 물질로 미세오염 물질들을 비롯해서 박테리아나 병원성 미생물체를 효과적으로 제거하는 것으로 많은 연구가 보고되어 있다. 본 연구에서는 실내 사육 중인 붉은 체색을 지닌 Glyptotendipes tokunagai를 대상으로 서로 다른 농도의 오존 노출에 따른 영향을 파악하기 위해 치사율, 체색 변화와 heat shock protein 70 (HSP70) 유전자 발현을 측정하였다. 오존에 노출된 G. tokunagai에서 농도-시간 의존적으로 치사율 증가가 관찰되었다. 또한 체색 변화는 오존 농도에 따라 붉은색의 체색이 체절마다 엷어지며 탈색되고 경직되는 현상이 보였다. HSP70 유전자 발현은 저농도인 0.2~0.5 ppm에서 노출 10분과 20분에 유의한 수준으로 높게 나타났으나(P<0.05), 30분 노출 후에는 발현량이 감소하는 경향을 보였다. 생리적으로 저산소층에 대해 적응능력이 뛰어난 깔따구 경우에도 오존은 매우 강력한 치사 효과를 유발하여 30분 노출 후 경직과 헤모글로빈 파괴로 인한 탈색이 유발되는 것을 보여주었다. 따라서 본 결과는 수돗물 정수장에서 병원성 미생물을 제거하는 데 사용되는 오존이 수생물에 주는 영향성을 파악하는 기초자료로서 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 한국연구재단 [NRF-2018-R1A6A1A-03024314]와 [NRF-2020-R1A2C1013936]의 지원을 받아 수행된 연구입니다.

References

  1. Alexander, J., G. Knopp, A. Dotsch, A. Wieland and T. Schwartz. 2016. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Science of The Total Environment 559: 103-112. https://doi.org/10.1016/j.scitotenv.2016.03.154
  2. Baek, M.J., T.J. Yoon and Y.J. Bae. 2012. Development of Glyptotendipes tokunagai(Diptera: Chironomidae) under different temperature conditions. Environmental Entomology 41: 950-958. https://doi.org/10.1603/EN11286
  3. Delaney, M.A. and P.H. Klesius. 2004. Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile tilapia Oreochromis niloticus. Aquaculture 236: 633-644. https://doi.org/10.1016/j.aquaculture.2004.02.025
  4. Englert, D., J.P. Zubrod, R. Schulz and M. Bundschuh. 2013. Effects of municipal wastewater on aquatic ecosystem structure and function in the receiving stream. Science of the Total Environment 454-455: 401-410. https://doi.org/10.1016/j.scitotenv.2013.03.025
  5. Garrido, C., E. Schmitt, C. Cande, N. Vahsen, A. Parcellier and G. Kroemer. 2003. HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2(6): 578-583. https://doi.org/10.4161/cc.2.6.521
  6. Hollender, J., S.G. Zimmermann, S. Koepke, M.M. Krauss, C.S. McArdell, C. Ort, H. Singer, U.V. Gunten and H. Siegrist. 2009. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale postozonation followed by sand filtration. Environmental Science & Technology 43: 7862-7869. https://doi.org/10.1021/es9014629
  7. Kim, W.S., B.H. Im, C. Hong, S.W. Choi, K. Park and I.S. Kwak. 2017. Gene expression of Chironomus riparius heat shock protein 70 and developmental retardation exposure to salinity. Korean Journal of Ecology and Environment 50: 305-313. https://doi.org/10.11614/KSL.2017.50.3.305
  8. Kim, W.S., R. Kim, K. Park, N. Chamilani and I.S. Kwak. 2015. The molecular biomarker genes expressions of rearing species Chironomus riparius and field species Chironomus plumosus exposure to heavy metals. Korean Journal of Ecology and Environment 48: 86-94. https://doi.org/10.11614/KSL.2015.48.2.086
  9. Kim, W.S., K. Park and I.S. Kwak. 2020. Stress evaluation to heavy metal exposure using marker in Chironomus riparius. Korean Journal of Ecology and Environment 53(2): 165-172. https://doi.org/10.11614/KSL.2020.53.2.165
  10. Kregel, K.C. 2002. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology 92: 2177-2186. https://doi.org/10.1152/japplphysiol.01267.2001
  11. Lee, J.H., S.H. Lee, Y.J. Bae, K.J. Cho, K.S. Ryoo, Y. Kim and M.P. Jung. 2009. Assessment techniques for ecological effects on heavy metal pollution using invertebrate biomarkers. Jeonghaengsa, Seoul, Korea.
  12. Michael, I., L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot and D. Fatta-Kassinos. 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research 47: 957-995. https://doi.org/10.1016/j.watres.2012.11.027
  13. Park, K. and I.S. Kwak. 2008. Characterization of heat shock protein 40 and 90 in Chironomus riparius larvae: effects of di (2-ethylhexyl) phthalate exposure on gene expressions and mouthpart deformities. Chemosphere 74: 89-95. https://doi.org/10.1016/j.chemosphere.2008.09.041
  14. Park, K. and I.S. Kwak. 2020. Cadmium-induced developmental alteration and upregulation of serine-type endopeptidae transcripts in wild freshwater populations of Chironomus plumosus. Ecotoxicology and Environmental Safety 192: 110240. https://doi.org/10.1016/j.ecoenv.2020.110240
  15. Park, K., H.W. Bang, J. Park and I.S. Kwak. 2009. Ecotoxico-logical multilevel-evolution of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 77(3): 359-367. https://doi.org/10.1016/j.chemosphere.2009.07.019
  16. Park, K., J. Park and I.S. Kwak. 2010. Biological and molecular responses of Chironomus riparius(Diptera, Chironomidae) to herbicide 2,4-D(2,4-dichlorophenoxyacetic acid). Comparative Biochemistry and Physiology Part C: Toxi-cology & Pharmacology 151(4): 439-446. https://doi.org/10.1016/j.cbpc.2010.01.009
  17. Panis, L.I., B. Goddeeris and R. Berheyen. 1996. On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae. Hydrobiologia 318: 61-67. https://doi.org/10.1007/BF00014132
  18. Pereira, R.D.O., M.L.D. Alda, J. Joglar, L.A. Daniel and D. Barcelo. 2011. Identification of new ozonation disinfection byproducts of 17β-estradiol and estrone in water. Chemosphere 84(11): 1535-1541. https://doi.org/10.1016/j.chemosphere.2011.05.058
  19. Schneider, C.A., W.S. Rasband and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089
  20. Somero, G.N. 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living. Integrative and Comparative Biology 42(4): 780-789. https://doi.org/10.1093/icb/42.4.780
  21. Stalter, D., A. Magdeburg, M. Weil, T. Knacker and J. Oehlmann. 2010. Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Research 44(2): 439-448. https://doi.org/10.1016/j.watres.2009.07.025
  22. Ternes, T., A. Joss and J. Oehlmann. 2015. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Research 72: 1-2. https://doi.org/10.1016/j.watres.2015.02.055
  23. Valacchi, G., A.V.D. Vliet, B.C. Schock, T. Okamoto, U. Obermuller-Jevic, C.E. Cross and L. Packer. 2002. Ozone exposure activates oxidative stress response in murine skin. Toxicology 179: 163-170. https://doi.org/10.1016/S0300-483X(02)00240-8
  24. Von Sonntag, C. and U. Von Gunten. 2012. Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing, London.
  25. World Health Organization. 2006. Expert Consultation for 2nd Addendum to the 3rd Edition of the Guidelines for Drinking-water Quality: Geneva, 15-19, May 2006. WHO/SDE/WSH/06.05. World Health Organization.
  26. Zhou, J., W.N. Wang, W.Y. He, Y. Zheng, L. Wang, Y. Xin, Y. Liu and A.L. Wang. 2010. Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge. Journal of Invertebrate Pathology 130(3): 170-178.