• Title/Summary/Keyword: Cornering

Search Result 133, Processing Time 0.023 seconds

CONSIDERATIONS CONCERNING IMPROVEMENT OF EMERGENCY EVASION PERFORMANCE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • When emergency evasion during running is required, a driver sometimes causes a vehicle to drift, that is, a condition in which the rear wheels skid due to rapid steering. Under such conditions, the vehicle enters a very unstable state and often becomes uncontrollable. An unstable state of the vehicle induced by rapid steering was simulated and the effect of differential steering assistance was examined. Results indicate that, in emergency evasion while cornering and during which the vehicle begins to drift, unstable behavior like spins can be avoided by differential steering assistance and both the stability and control of the vehicle is improved remarkably. In addition, reduction of overshoot during spin evasion by the differential steering assistance has been shown to enable the vehicle to return to a state of stability in a short time in emergency evasion during straight-line running. Moreover, the effectiveness of differential steering assistance during emergency evasion was confirmed using a driving simulator.

Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가)

  • Boo Kwang-Suck;Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach

  • Lee Ji-Hyoung;Kim Chang-Sei;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2005
  • In this paper, to improve the efficiency of welding and user convenience in the shipbuilding industry, a PC-based off-line programming (OLP) technique and the development of a robot transfer unit are presented. The developed OLP system is capable of not only robot motion simulations but also automatic generations of a series of robot programs. The strength of the developed OLP system lies in its flexibility in handling the changes of the welding robot's target objects. Moreover, for a precise transfer of the robot to a desired location, an auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To enhance the cornering capability of the platform in a narrow area, the developed ROTU is equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field­tested and their performances were proven successful.

A Development of New Vehicle Model for Yaw Rate Estimation (요각속도 추정을 위한 새로운 차량 모델의 개발)

  • Bae, Sang-Woo;Shin, Moo-Hyun;Kim, Dae-Kyun;Lee, Jang-Moo;Lee, Jae-Hyung;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.565-570
    • /
    • 2001
  • Vehicle dynamics control (VDC) system requires more information on driving conditions compared with ABS and/or TCS. In order to develop the VDC system, tire slip angles, vehicle side-slip angle, and vehicle lateral velocity as well as road friction coefficient are needed. Since there are not any cheap and reliable sensors, recent researches on parameter estimation have given rise to a number of parameter estimation techniques. This paper presents new vehicle model to estimate vehicle's yaw rate. This model is improved from the conventional 2 degrees of freedom vehicle model, so-called bicycle model, taking nonlinear effects into account. These nonlinear effects are: (i) tyre nonlinearity; (ii) lateral load transfer during cornering; (iii) variable gear ratio with respect to vehicle velocity. Estimation results are validated with the experimental results.

  • PDF

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.

Analysis of the Frictional Behavior of Rubber Block (고무 블록의 마찰 거동 해석)

  • Kim, Doo-Man;Yoo, Hyun-Seung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2006
  • The friction and wear of tire determined by frictional behavior of tire tread that translate driving force, cornering force and braking force between automobile and road as a result of frictional behavior of each tread block. The tire tread block is representative case of rubber block doing frictional behavior. In this paper, frictional behavior of rubber block under compressive force and shear force was analytically obtained by using slip starting position parameter instead of friction coefficient which is uncertain to express exact value between rubber and other surfaces yet. And local coefficients of friction were calculated as a function of compressive force, shear force, shear modulus of rubber, shape factor and slip starting position.

  • PDF

Asymmetrical Contouring Control of Biaxial System (2축 시스템의 비대칭 윤곽제어)

  • Sim, Young Bok;Jung, Yu Chul;Lee, Gun Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.65-72
    • /
    • 1997
  • An asymmetrical cross-coupled compensator to improve the contouring performance is proposed. This is a refinement of the structure suggested by Koren. The position loop is closed with a proportional controller as in the uncoupled system. An additional input term proportional to the component of the contour error along the corresponding axis is included. The controller gains are chosen to give an appropriate frequency response and an optimum range for the damping ratio. The effectiveness of the proposed controller is studied by means of digital simulations of the dynamics of the drives and the controller for 4 types of command trajectories: straight line contour, cornering contour, circular contour, elliptic contour. Substantial improvement in contouring performance is obtained for a range of contouring conditions.

  • PDF

Caculating Ship Rudder Angle and Real-Time Mass Estimator Under Dynamic State (동적 상태의 선박 조향각 및 실시간 질량 추정 시스템)

  • Jin–hyuk Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.31-32
    • /
    • 2022
  • In Early vessels did not provide an exact equation for preventig the capsizing vessels. On land, many vehicle rollover prevention technologies using the steady-state Conrning Equations were developed, which showed better performance than the exiting method at sea. For better performance, It is proposed to improve safety mangement when turning vessel using the Ackerman geometic model-based Cornering Equations in this paper.

  • PDF

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.