• Title/Summary/Keyword: Coriolis Force

Search Result 132, Processing Time 0.026 seconds

Numerical Study of Three-dimensional Flow Through a Turbine Flow Meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J.B.;Ko S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.44-50
    • /
    • 2003
  • Flow through a turbine flow meter is simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames, and the centrifugal force and the Coriolis force are added to the equation of motion. The standard $k-{\epsilon}$model is employed to evaluate turbulent viscosity. Computational results yield quantitative as well as qualitative information on the design of turbine flow meters by showing the distributions of pressure and velocity around the turbine blades.

Numerical study of three-dimensional flow through turbine flow meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J. B.;Park, K. A.;Ko, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.247-252
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel Line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. The standard k-$\epsilon$ model is employed to evaluate turbulent viscosity.

  • PDF

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

A study on the computer simulation model of the closed moving system using the nutation force (폐쇄된 계의 장동 힘에 의한 이동장치의 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.331-336
    • /
    • 2005
  • The closed movement produced vertically on the position of a motor is a notation movement produced by a notation force , while the horizontal movement can be shown by the coriolis force and the transverse force of realizing that the closed movement of the closed system is to be rotation motion. The notation movement is a vertical closed movement and by searching the equation which becomes an equation model, after comparing the simulation data from the equation model with data of a real device to use it into the computer simulation model, the additional variable elements were decided. As the result, the energy imbalance element is added as a variable about load which is relevant to friction coefficient and pole of a motor in the gravitational field. The simulation can be applied as a real physical law of the graphic game and haptic program.

  • PDF

Study on the Similarity of Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Squared Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관내에서의 층류 유동의 유사성 비교)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1683-1691
    • /
    • 2000
  • In this study, it is numerically revealed that the secondary flow due to the Coriolls force in a straight duct rotating about an axis perpendicular to that of the duct is analogous to that caused by the centrifugal force in a stationary curved duct. Dimensionless parameters $K_{LR}=Re/\sqrt{Ro}$ and Rossby number in a rotating straight duct were used as a set corresponding to Dean number and curvature ratio in a stationary curved duct. When the value of Rossby number and curvature ratio is large, it is shown that the flow field satisfies the `asymptotic invariance property`, that is, there are strong quantitative similarities between the two flows such as friction factors, flow patterns, and maximum axial velocity magnitudes for the same values of $K_{LR}$ and Dean number.

Conceptual Study and Design Ideas for SUAV Propulsion System (스마트무인기 신개념추진시스템 개념연구)

  • 전용민;정용운;양수석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.19-26
    • /
    • 2003
  • In this paper, the result of the conceptual study of a tipjet driven propulsion system is presented. The concept of a tipjet driven propulsion system is to employ tipjet as power source to drive a rotor Because the vehicle is supposed to takeoff and land vertically, a rotor system, which has tipjet nozzles, is adopted to fly like a helicopter. Exhaust gas, which is generated by an engine, Passes through an internal duct system and divided into four blade ducts. The design code is consists of two parts, engine model and internal duct model. Inside a rotating duct, compressible flow is affected by two additional force terms, centrifugal force and coriolis force and they govern the performance in rotary mode, The intention of this paper is to address the issues associated with sizing and optimizing configurations of a tipjet driven propulsion system especially in rotary wing mode.

Dynamic Response and Vibration Characteristics of an Isolation Rail Track under a Traveling Mass (주행질량하의 방진 궤도레일의 동적응답 및 진동특성)

  • Oh, B.J.;Ryu, B.J.;Kim, J.H.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • This paper presents the dynamic response and the vibration characteristics for a rail-track supported by discrete springs and dampers. Recently, automatic conveyer system, rail-track, rack-master system demand the soundproof facilities and vibration suppression measures in order to satisfy the strict environmental standards. The equations of motions of the dynamic characteristics for a vibration suppression rail-track under a traveling mass were derived by Galerkin's mode summation method considering gravity, centrifugal force, Coriolis force, inertia force of the moving mass, transverse inertia of the rail-track. Also, numerical results were calculated by Runge-Kutta integration method. In order to investigate vibration characteristics and dynamic responses, modal testing and measurement of the responses of the rail-track were performed. Through the experiment and numerical simulations, numerical results have a good agreement with experimental ones.

An Efficient Solution for Multibody Dynamics Composed of Flexible Beams (유연한 보로 구성된 다물체 동역학의 효율적인 해법)

  • 이기수;금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2298-2305
    • /
    • 1992
  • To obtain the convenient solution of the multibody dynamic systems composed of flexible beams, linear finite element technique is adopted and the nodal coordinates are interpolated in the global inertia frame. Mass matrix becomes an extremely simple constant matrix and the force vector also becomes extremely simple because Coriolis acceleration and centrifugal force are not required. And the elastic force is also simply computed from the moving frame attached to the material. To solve the global differential algebraic euation. an ODE technique is adopted after Lagrange multiplier is computed by the accelerated iterative technique, and the time demanding procedures such as Newton-Raphson iterations and decomposition of the big matrix are not required. The accuracy of the present solution is checked by a well-known example problem.