• Title/Summary/Keyword: Core deformation

Search Result 407, Processing Time 0.023 seconds

Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers

  • Si, Hua;Shen, Daoming;Xia, Jinhong;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.509-523
    • /
    • 2019
  • In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

Evaluation of Crack Propagation in Silicon Anode using Cohesive Zone Model during Two-phase Lithiation (접착영역 모델을 사용한 2상 리튬 이온 충전 시 실리콘 음극 전극의 균열진전 해석)

  • Kim, Yong-Woo;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.297-304
    • /
    • 2019
  • In this research, crack propagation in a silicon anode during two-phase lithiation was evaluated using a cohesive zone model. The phase transition from crystalline silicon to lithiated silicon causes compressive yielding due to the high volume expansion rate. Li-ion diffuses from the surface of the silicon to its core, and the complex deformation mechanisms during lithiation cause tensile hoop stress along the surface. The Park-Paulino-Roesler (PPR) potential-based cohesive zone model that guarantees consistent energy dissipation in mixed-mode fracture was adopted to simulate edge crack propagation. It was confirmed that the edge crack propagation characteristics during lithiation from the FEM simulation results coincided with the real experimental results. Crack turning observed from real experiments could also be predicted by evaluating the angles of maximum tensile stress directions.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces

  • Maalek, Shahrokh;Heidary-Torkamani, Hamid;Pirooz, Moharram Dolatshahi;Naeeini, Seyed Taghi Omid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • In this research, the behavior of tube-in-tube BRBs (TiTBRBs) has been investigated. In a typical TiTBRB, the yielding core tube is located inside the outer restraining one to dissipate energy through extensive plastic deformation, while the outer restraining tube remains essentially elastic. With the aid of FE analyses, the monotonic and cyclic behavior of the proposed TiTBRBs have been studied as individual brace elements. Subsequently, a detailed finite element model of a representative single span-single story frame equipped with such a TiTBRB has been constructed and both monotonic and cyclic behavior of the proposed TiTBRBs have been explored under the application of the AISC loading protocol at the braced frame level. With the aid of backbone curves derived from the FE analyses, a simplified frame model has been developed and verified through comparison with the results of the detailed FE model. It has been shown that, the simplified model is capable of predicting closely the cyclic behavior of the TiTBRB frame and hence can be used for design purposes. Considering type of connection detail used in a frame, the TiTBRB member which behave satisfactorily at the brace element level under cyclic loading conditions, may suffer global buckling due to the flexural demand exerted from the frame to the brace member at its ends. The proposed TiTBRB suit tubular members of offshore structures and the application of such TiTBRB in a typical offshore platform has been introduced and studied in a single frame level using detailed FE model.

Structural Safety Analysis of a Spherical Flight Simulator Designed with a GFRP-Foam Sandwich Composite (GFRP-폼 샌드위치 복합재료로 설계된 구체 비행 시뮬레이터의 구조 안정성 평가)

  • Hong, Chae-Young;Ji, Wooseok
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2019
  • A flight training simulator of a fully spherical configuration is being developed to precisely and quickly control six degrees of freedom (Dof) motions especially with unlimited rotations. The full-scale simulator should be designed with a lightweight material to reduce inertial effects for fast and stable feedback controls while no structural failure is ensured during operations. In this study, a sandwich composite consisting of glass fiber reinforced plastics and a foam core is used to obtain high specific strengths and specific stiffnesses. T-type stainless steel frames are inserted to minimize the deformation of the sphere curvature. Finite element analysis is carried out to evaluate structural safety of the simulator composed of the sandwich sphere and steel frames. The analysis considers the weights of the equipment and trainee and it is assumed to be 200 kg. Gravity acceleration is also considered. The stresses and displacement acting on the simulator are calculated and the safety is assessed under two different situations.

Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities (수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구)

  • Choi, In-Hyuk;Baek, Eun-Rim;Lee, Sang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.