Browse > Article
http://dx.doi.org/10.7734/COSEIK.2019.32.5.297

Evaluation of Crack Propagation in Silicon Anode using Cohesive Zone Model during Two-phase Lithiation  

Kim, Yong-Woo (Department of Civil and Environmental Engineering, Yonsei University)
Han, Tong-Seok (Department of Civil and Environmental Engineering, Yonsei University)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.32, no.5, 2019 , pp. 297-304 More about this Journal
Abstract
In this research, crack propagation in a silicon anode during two-phase lithiation was evaluated using a cohesive zone model. The phase transition from crystalline silicon to lithiated silicon causes compressive yielding due to the high volume expansion rate. Li-ion diffuses from the surface of the silicon to its core, and the complex deformation mechanisms during lithiation cause tensile hoop stress along the surface. The Park-Paulino-Roesler (PPR) potential-based cohesive zone model that guarantees consistent energy dissipation in mixed-mode fracture was adopted to simulate edge crack propagation. It was confirmed that the edge crack propagation characteristics during lithiation from the FEM simulation results coincided with the real experimental results. Crack turning observed from real experiments could also be predicted by evaluating the angles of maximum tensile stress directions.
Keywords
silicon anode; crack propagation; cohesive zone model; two-phase lithiation; PPR model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y. (2008) High-Performance lithium Battery Anodes using Silicon Nanowires, Nat. Nanotechnol., 3(1), pp.31-35.   DOI
2 Choi, J.W., Cui, Y., Nix, W.D. (2011) Size-Dependent Fracture of Si Nanowire Battery Anodes, J. Mech. & Phys. Solids, 59(9), pp.1717-1730.   DOI
3 Ebrahimi, F., Kalwani, L. (1999) Fracture Anisotropy in Silicon Single Crystal, Materials Sci. & Eng.: A, 268(1), pp.116-126.   DOI
4 Hall, J.J. (1967) Electronic Effects in the Elastic Constants of N-Type Silicon, Phys. Rev., 161(3), p.756.   DOI
5 Hauch, J.A., Holland, D., Marder, M., Swinney, H.L. (1999) Dynamic Fracture in Single Cystal Silicon, Phys. Rev. Lett., 82(19), p.3823.   DOI
6 Hertzberg, B., Benson, J., Yushin, G. (2011) Ex-situ Depth-sensing Indentation Measurements of Electrochemically Produced Sili Alloy Films, Electrochem. Commun., 13(8), pp.818-821.   DOI
7 Kluge, M.D., Ray, J.R.,Rahman, A. (1986) Molecular Dynamic Calculation of Elastic Constants of Silicon, J. Chem. Phys., 85(7), pp.4028-4031.   DOI
8 Lee, S.W., Gao, H., Cui, Y., Nix, W.D. (2014) Microscopic Model for Fracture of Crystalline Si Nanopillars during Lithiation, J. Power Sources, 255, pp.274-282.   DOI
9 Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., Cui, Y. (2012) Fracture of Crystalline Silicon Nanopillars during Electrochemical Lithium Insertion, Proc. Nat. Academ. Sci., 109(11), pp.4080-4085.   DOI
10 Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y. (2012) Size-Dependent Fracture of Silicon Nanoparticles during Lithiation, Acs Nano, 6(2), pp.1522-1531.   DOI
11 McDowell, M.T., Lee, S.W., Harris, J.T., Korgel, B.A., Wang, C., Nix, W.D., Cui, Y. (2013) In Situ Tem of Two-Phase Lithiation of Aorphous Silicon Nanospheres, Nano Lett., 13(2), pp.758-764.   DOI
12 Park, K., Paulino, G.H., Roesler, J.R. (2009) A Unified Potential-based Cohesive Model of Mixed-Mode Fracture, J. Mech. & Phys. Solids, 57(6), pp.891-908.   DOI
13 Pharr, M., Suo, Z., Vlassak, J.J. (2013) Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-ion Batteries, Nano Lett., 13(11), pp.5570-5577.   DOI
14 Sethuraman, V.A., Chon, M.J., Shimshak, M., Srinivasan, V., Guduru, P.R. (2010) In Situ Measurements of Stress Evolution in Silicon Thin Films during Electrochemical Lithiation and Delithiation, J. Power Sources, 195(15), pp.5062-5066.   DOI
15 Swadener, J., Baskes, M., Nastasi, M. (2002) Molecular Dynamics Simulation of Brittle Fracture in Silicon, Phys. Rev. Lett., 89(8), p.085503.   DOI
16 Zhao, K., Pharr, M., Wan, Q., Wang, W.L., Kaxiras, E., Vlassak, J.J., Suo, Z. (2012) Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries, J. Electrochem. Soc., 159(3), pp.A238-A243.   DOI
17 Wortman, J.J., Evans, R.A. (1965) Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium, J. Appl. Phys., 36(1), pp.153-156.   DOI