• Title/Summary/Keyword: Core Generator

Search Result 214, Processing Time 0.02 seconds

APOLLO2 YEAR 2010

  • Sanchez, Richard;Zmijarevi, Igor;Coste-Delclaux, M.;Masiello, Emiliano;Santandrea, Simone;Martinolli, Emanuele;Villate, Laurence;Schwartz, Nadine;Guler, Nathalie
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.474-499
    • /
    • 2010
  • This paper presents the mostortant developments implemented in the APOLLO2 spectral code since its last general presentation at the 1999 M&C conference in Madrid. APOLLO2 has been provided with new capabilities in the domain of cross section self-shielding, including mixture effects and transfer matrix self-shielding, new or improved flux solvers (CPM for RZ geometry, heterogeneous cells for short MOC and the linear-surface scheme for long MOC), improved acceleration techniques ($DP_1$), that are also applied to thermal and external iterations, and a number of sophisticated modules and tools to help user calculations. The method of characteristics, which took over the collision probability method as the main flux solver of the code, allows for whole core two-dimensional heterogeneous calculations. A flux reconstruction technique leads to fast albeit accurate solutions used for industrial applications. The APOLLO2 code has been integrated (APOLLO2-A) within the $ARCADIA^{(R)}$ reactor code system of AREVA as cross section generator for PWR and BWR fuel assemblies. APOLLO2 is also extensively used by Electricite de France within its reactor calculation chain. A number of numerical examples are presented to illustrate APOLLO2 accuracy by comparison to Monte Carlo reference calculations. Results of the validation program are compared to the measured values on power plants and critical experiments.

Design of an Optimal RSA Crypto-processor for Embedded Systems (내장형 시스템을 위한 최적화된 RSA 암호화 프로세서 설계)

  • 허석원;김문경;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.447-457
    • /
    • 2004
  • This paper proposes a RSA crypto-processor for embedded systems. The architecture of the RSA crypto-processor should be used relying on Big Montgomery algorithm, and is supported by configurable bit size. The RSA crypto-processor includes a RSA control signal generator, an optimal Big Montgomery processor(adder, multiplier). We use diverse arithmetic unit (adder, multiplier) algorithm. After we compared the various results, we selected the optimal arithmetic unit which can be connected with ARM core-processor. The RSA crypto-processor was implemented with Verilog HDL with top-down methodology, and it was verified by C language and Cadence Verilog-XL. The verified models were synthesized with a Hynix 0.25${\mu}{\textrm}{m}$, CMOS standard cell library while using Synopsys Design Compiler. The RSA crypto-processor can operate at a clock speed of 51 MHz in this worst case conditions of 2.7V, 10$0^{\circ}C$ and has about 36,639 gates.

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

The Development of the Contamination Prevention Module of an Optical Window Using Ultrasonic Waves (초음파를 이용한 광학창 오염방지 모듈 개발)

  • Lee, ChangHee;Jeon, KiMun;Shin, JaeSoo;Yun, JuYoung;Cho, Seonghyun;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • We developed the contamination prevention module of an optical window for an In-Situ Particle Monitor (ISPM) system. the core part of the module is the generator of an ultrasonic wave and the module is to remove particles stuck to the window by the transfer of the wave force to the window surface. In order to enhance transfer efficiency of the waves the frequency of the ultrasonic wave was optimized and a low impedance material (plexiglass) and a soft sealing material (Si rubber) were used. The ISPM with the developed module was installed at the exhaust line of a BPSG CVD equipment and the effect of the module was verified.

Implementation of Real-time Data Stream Processing for Predictive Maintenance of Offshore Plants (해양플랜트의 예지보전을 위한 실시간 데이터 스트림 처리 구현)

  • Kim, Sung-Soo;Won, Jongho
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.840-845
    • /
    • 2015
  • In recent years, Big Data has been a topic of great interest for the production and operation work of offshore plants as well as for enterprise resource planning. The ability to predict future equipment performance based on historical results can be useful to shuttling assets to more productive areas. Specifically, a centrifugal compressor is one of the major piece of equipment in offshore plants. This machinery is very dangerous because it can explode due to failure, so it is necessary to monitor its performance in real time. In this paper, we present stream data processing architecture that can be used to compute the performance of the centrifugal compressor. Our system consists of two major components: a virtual tag stream generator and a real-time data stream manager. In order to provide scalability for our system, we exploit a parallel programming approach to use multi-core CPUs to process the massive amount of stream data. In addition, we provide experimental evidence that demonstrates improvements in the stream data processing for the centrifugal compressor.

Korean Reusable Launch Vehicle Development Strategy Using SpaceX's Strategy (SpaceX의 전략을 활용한 한국형 재사용 발사체 개발 전략)

  • Lee, Keum-Oh;Lee, Junseong;Park, Soon-Young;Roh, Woong-Rae;Im, Sung-Hyuck;Nam, Gi-Won;Seo, Daeban
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.101-112
    • /
    • 2021
  • SpaceX shows various strategies such as constructing various payload portfolio through the reuse of Falcon 9 and Falcon Heavy, constructing the launch vehicles using one type of engine, the transition from kerosene engine to methane engine, and the use of 3D printing. In this study, launch vehicle proposals that can cover a variety of payloads and trajectories from KOMPSAT to GEO-KOMPSAT were constructed, and ten launch vehicles using kerosene gas generator cycle engine, kerosene staged-combustion cycle engine, and methane staged-combustion cycle engine were reviewed. Of the ten launch vehicles, the reusable launch vehicle using a 35-ton methane engine was rated as the best in terms of development potential.

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.

A Pilot Study of English Learners' Perception on Writing Activities using AI-Based DALL-E2 (인공지능 기반 DALL-E2 활용 쓰기 활동에 대한 영어학습자들의 인식 조사)

  • Tecnam Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • The purpose of this pilot study is to examine the responses of middle school students to English learning after conducting English writing activities using DALL-E2, an image-generating artificial intelligence tool. To this end, an experimental class was conducted for 3 weeks for 15 middle school English learners, and the results are summarized as follows. First, as a result of a survey on English writing activities using DALL-E2, it was found that confidence, interest, and awareness of writing using artificial intelligence-based tools changed positively. In addition, it was confirmed that there was a statistically significant difference, which meant that learning using artificial intelligence had a positive effect on English writing and overall English learning. Second, as a result of analyzing the English writing activities using DALL-E2, core themes could be extracted into three (cognitive, affective, and psychodynamic characteristics), and the use and implementation of artificial intelligence-based DALL-E2 in English learning showed potential to increase learning interest, challenge, will, and desire in learning and ultimately contribute to enhancing productive skill.

A Comparison Study on Severe Accident Risks Between PWR and PHWR Plants (가압 경수로 및 가압중수로형 원자력 발전소의 중대사고 리스크 비교 평가)

  • Jeong, Jong-Tae;Kim, Tae-Woon;Ha, Jae-Joo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.187-196
    • /
    • 2004
  • The health effects resulting from severe accidents of typical 1,000MWe KSNP(Korea Standard Nuclear Plant) PWR and typical 600MWe CANDU(CANada Deuterium Uranium) plants were estimated and compared. The population distribution of the site extending to 80km for both site were considered. The releaese fraction for various source term categories(STC) and core inventories were used in the estimation of the health effects risks by using the MACCS2(MELCOR Accident Consequence Code System2) code. Individuals are assumed to evacuate beyond 16km from the site. The health effects considered in this comparative study are early and cancer fatality risk, and the results are presented as CCDF(Complementary Cumulative Distribution Function) curves considering the occurrence probability of each STC's. According to the results, the early and cancer fatality risks of PHWR plants we lower than those of PWR plants. This is attributed the fact that the amount of radioactive mateials that released to the atmosphere resulting from the postulated severe accidents of PHWR plants are smaller than that of PWR plants. And, the dominating initiating event of STC that shows maximum early and cancer fatality risk is SGTR(Steam Generator Tube Rupture) for both plants. Therefore, the appropriated actions must be taken to reduce the occurrence probability and the amounts of radioactive materials released to the environment in order to protect the public for both PWR and PHWR plants.