• Title/Summary/Keyword: Core/shell

Search Result 697, Processing Time 0.026 seconds

Nanostructure of core-shell support for enhanced electrochemical activity in PEMFC (코어-쉘 구조의 지지체를 이용한 성능 향상에 대한 연구)

  • Kim, Doyoung;Han, Sangbeom;Lee, Youngwoo;Kim, Sijin;Park, Kyungwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.93-93
    • /
    • 2011
  • Nanostructures consisting of $TiO_2$ particles as a core and carbon as a shell ($TiO_2$@C) were prepared by heat treatment of $TiO_2$ nanoparticles at high temperature in a methane atmosphere. X-ray diffraction and transmission electron microscopy showed that a carbon shell layer was formed well. These structures were used as supports for platinum nanoparticles and the hybrid particles exhibit improved catalytic activity and stability toward ORR compared to Pt on a carbon black (Vulcan XC-72R). It is likely that enhanced catalytic properties of the Pt on $TiO_2$@C could be due to the stability of the core-shell support in comparison with carbon black support.

  • PDF

The Effect of Anionic Surfactants in Synthesizing Calcium Carbonate/Acrylate Core-Shell Polymer (탄산칼슘/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • The core-shell latex particles were prepared by sequential emulsion polymerization using alkyl methacrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We study the effects of core-shell structure of calcium carbonate/alkyl methacrlyate in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alkyl ether sulfate (EU-S133D)). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by transmission electron microscope (TEM).

Preparation process of functional particles : I. Preparation of microcapsule by spray drying (기능성 미분말의 제조공정에 관한 연구 : I. 분무건조법에 의한 microcapsule 제조)

  • 정철원;허화범;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.521-531
    • /
    • 1996
  • Inorganic and inorganic/organic microcapsules were prepared by spray drying. $K_{4}SO$ and clay were used as the core and colloidal silica as the shell for the inoroganic microcapsules. Forthe inorganic/organic microcapsules were used the inorganic microcapsule which were mentioned above (core) and ethyl cellulose (shell). To characterize the prepared microcapsule for the practical use, the homogenity of surface and pore volume are the dominent factors. At the volume ratio of 0.3/0.7 of core/shell, the spherical and homogeneous surfaces of inorganic microcapsule could be synthesized. In the case of inorganic/organic microcapsules, the weitht ratio was 0.76/0.24. The pore volume of inorganic/organic microcapsules decreases more than that of inorganic microcapsule. The more the amount of shell (ethyl cellulose) in inorganic/organic microcapsules increases, the more the coating became homogeneous and the pore volume decreased.

  • PDF

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.

Synthesis and Characterization of SnO2-CoO/carbon-coated CoO Core/shell Nanowire Composites (SnO2-CoO/carbon-coated CoO core/shell 나노선 복합체의 합성 및 구조분석)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2014
  • $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites were synthesized by using electrospinning and hydrothermal methods. In order to obtain $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites, $SnO_2-Co_3O_4$ nanowire composites and $SnO_2-Co_3O_4$/polygonal $Co_3O_4$ core/shell nanowire composites are also synthesized. To demonstrate their structural, chemical bonding, and morphological properties, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. These results indicated that the morphologies and structures of the samples were changed from $SnO_2-Co_3O_4$ nanowires having cylindrical structures to $SnO_2-Co_3O_4/Co_3O_4$ core/shell nanowires having polygonal structures after a hydrothermal process. At last, $SnO_2-CoO$/carbon-coated CoO core/shell nanowire composites having irregular and high surface area are formed after carbon coating using a polypyrrole (PPy). Also, there occur phases transformation of cobalt phases from $Co_3O_4$ to CoO during carbon coating using a PPy under a argon atmosphere.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target (Ti-Mo 코어-쉘 분말 제조 및 소결 특성 연구)

  • Won Hee Lee;Chun Woong Park;Heeyeon Kim;Yuncheol Ha;Jongmin Byun;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400℃. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.

Influence of the Composition of Shell Layers on the Photoluminescence of Cu0.2InS2 Semiconductor Nanocrystals with a Core-shell Structure

  • Kim, Young-Kuk;Ahn, Si-Hyun;Cho, Young-Sang;Chung, Kookchae;Choi, Chul-Jin;Shin, Pyung-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.900-904
    • /
    • 2011
  • We have synthesized core-shell structured nanocrystals based on chalcopyrite-type $Cu_{0.2}InS_2$. The photoluminescence of the nanocrystals shows a significant blueshift in the emission wavelength by shell capping with ZnS layers. This shift can be explained with the compressive stress to core nanocrystals applied by the formation of a ZnS shell layer with a large lattice mismatch with the core. In this study, the emission wavelength could be tuned by changing the composition of the shell layers. Nanocrystals with emission wavelength ranging from 575 nm through 630 nm were synthesized by varying the portion of cadmium compared with zinc in the shell layers.

Synthesis and Characterization of Spherical SiO2@Y2O3 : Eu Core-Shell Composite Phosphors (구형 SiO2@Y2O3: Eu 코어-쉘 복합체 형광체 합성 및 특성)

  • Song, Woo-Seuk;Yang, Hee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.447-453
    • /
    • 2011
  • The monodisperse spherical $SiO_2$ particles were overcoated with $Y_2O_3:Eu^{3+}$ phosphor layers via a Pechini sol-gel process and the resulting $SiO_2@Y_2O_3:Eu^{3+}$ core-shell phosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and luminescent property of core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL). The spherical, nonagglomerated $SiO_2$ particles prepared by a Stober method exhibited a relatively narrow size distribution in the range of 260-300 nm. The thickness of phosphor shell layer in the core-shell particles can be facilely controlled by varying the coating number of $Y_2O_3:Eu^{3+}$ phosphors. The core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors showed a strong red emission, which was dominated by the $^5D_0-^7F_2$ transition (610 nm) of $Eu^{3+}$ ion under the ultraviolet excitation (263 nm). The PL emission properties of $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were also compared with pure $Y_2O_3:Eu^{3+}$ nanophosphors.

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application (초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.