Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.6.298

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes  

Son, Jeong-Hun (School of Nano & Advanced Materials Engineering, Changwon National Univ.)
Bae, Dong-Sik (School of Nano & Advanced Materials Engineering, Changwon National Univ.)
Publication Information
Korean Journal of Materials Research / v.22, no.6, 2012 , pp. 298-302 More about this Journal
Abstract
Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.
Keywords
Fe/$SiO_2$ nanoparticles; core-shell type nanoparticles; sol-gel process; reverse micelle process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham and J. H. Adair, Langmuir, 15, 4328 (1999).   DOI   ScienceOn
2 C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, Nature, 382, 607 (1996).   DOI   ScienceOn
3 M. Han, X. Gao, J. Z. Su and S. Nie, Nat. Biotechnol., 19, 631 (2001).   DOI   ScienceOn
4 S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science, 287, 1989 (2000).   DOI   ScienceOn
5 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha and H. A. Atwater, Adv. Mater., 13, 1501 (2001).   DOI
6 W. P. McConnell, J. P. Novak, L. C. Brousseau III, R. R. Fuierer, R. C. Tenent and D. L. Feldheim, J. Phys. Chem. B, 104, 8925 (2000).   DOI   ScienceOn
7 S. Chen and Y. Yang, J. Am. Chem. Soc., 124, 5280 (2002).   DOI   ScienceOn
8 G. De1, L. Tapfer, M. Catalano, G. Battaglin, F. Caccavale, F. Gonella, P. Mazzoldi and R. F. Haglund, Appl. Phys. Lett., 68, 3820 (1996).   DOI   ScienceOn
9 T. Kokugan, A. Trianto and H. Takeda, J. Chem. Eng. Jpn., 31, 596 (1998).   DOI   ScienceOn
10 Y. Wang and N. Herron, J. Phys. Chem., 95, 525 (1991).   DOI
11 Y. M. Tricot and J. H. Fendler, J. Phys. Chem., 90, 3369 (1986).   DOI
12 Y. Wang and W. Mahler, Optic. Comm., 61, 233 (1987).   DOI   ScienceOn
13 N. Ichinose, Introduction to Fine Ceramics: Applications in Engineering, p. 3, John Wiley & Sons, New York, USA (1987).
14 N. Ichinose, Y. Ozaki and S. Kashu, Superfine Particle Technology, p. 24, Springer, New York, USA (1988).
15 C. J. Brinker and G. W. Scherer, Sol-Gel Science : The Physics and Chemistry of Sol-Gel Processing, p. 2, Academic Press, San Diego, USA (1990).
16 A. E. Neeves and M. H. Birnboim, J. Opt. Soc. Am. B, 6, 787 (1989).   DOI
17 K. Osseo-Asare and F. J. Arrigada, Ceramic Trans., 12, 3 (1990).
18 G. Schmid, Chem. Rev., 92, 1709 (1992).   DOI
19 J. L. Bars, U. Specht, J. S. Bradley and D. G. Blackmond, Langmuir, 15, 7621 (1999).   DOI   ScienceOn
20 Y. Li, X. M. Hong, D. M. Collard and M. A. El-Sayed, Org. Lett., 2, 2385 (2000).   DOI   ScienceOn
21 Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 105, 8938 (2001).   DOI   ScienceOn
22 J. Dai and M. L. Bruening, Nano Lett., 2, 497 (2002).   DOI   ScienceOn
23 J. W. Yoo, D. Hathcock and M. A. El-Sayed, J. Phys. Chem., 106, 2049 (2002).   DOI   ScienceOn
24 P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine and M. Broyer, J. Phys. Chem. B, 103, 8706 (1999).
25 R. A. Reynolds, C. A. Mirkin and R. L. Letsinger, J. Am. Chem. Soc., 122, 3795 (2000).   DOI   ScienceOn
26 D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, S. C. Williams and A. P. Alivisatos, J. Phys. Chem. B, 106, 11758 (2002).   DOI   ScienceOn
27 J. M. Nam, S. J. Park and C. A. Mirkin, J. Am. Chem. Soc., 124, 3820 (2002).   DOI   ScienceOn