DOI QR코드

DOI QR Code

Influence of the Composition of Shell Layers on the Photoluminescence of Cu0.2InS2 Semiconductor Nanocrystals with a Core-shell Structure

  • Kim, Young-Kuk (Division of Functional Materials Research, Korea Institute of Materials Science (KIMS)) ;
  • Ahn, Si-Hyun (Division of Functional Materials Research, Korea Institute of Materials Science (KIMS)) ;
  • Cho, Young-Sang (Division of Functional Materials Research, Korea Institute of Materials Science (KIMS)) ;
  • Chung, Kookchae (Division of Functional Materials Research, Korea Institute of Materials Science (KIMS)) ;
  • Choi, Chul-Jin (Division of Functional Materials Research, Korea Institute of Materials Science (KIMS)) ;
  • Shin, Pyung-Woo (Department of Materials Science and Engineering, Changwon National University)
  • Received : 2011.03.14
  • Published : 2011.11.25

Abstract

We have synthesized core-shell structured nanocrystals based on chalcopyrite-type $Cu_{0.2}InS_2$. The photoluminescence of the nanocrystals shows a significant blueshift in the emission wavelength by shell capping with ZnS layers. This shift can be explained with the compressive stress to core nanocrystals applied by the formation of a ZnS shell layer with a large lattice mismatch with the core. In this study, the emission wavelength could be tuned by changing the composition of the shell layers. Nanocrystals with emission wavelength ranging from 575 nm through 630 nm were synthesized by varying the portion of cadmium compared with zinc in the shell layers.

Keywords

References

  1. M. Bawendi, M. Steigerwald, and L. Brus, Ann. Rev. Phys. Chem. 41, 477 (1990). https://doi.org/10.1146/annurev.pc.41.100190.002401
  2. M. J. Lee, Met. Mater. Int. 9, 83 (2003). https://doi.org/10.1007/BF03027235
  3. S. Kim, M. Y. Cho, G. Nam, M. S. Kim, D. Y. Kim, K. G. Yim, J.-Y. Leem, Kor. J. Met. Mater. 49, 818 (2011).
  4. S. Xu, J. Ziegler, and T. Nann, J. Mater. Chem. 18, 2653 (2008). https://doi.org/10.1039/b803263g
  5. N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida, Nature 259, 686 (2008).
  6. R. Xie, M. Rutherford, and X. Peng, Chem. Mater. 20, 531 (2008). https://doi.org/10.1021/cm070754d
  7. H. Zhong, Y. Zhou, Y. Mingfu, Y. He, J. Ye, C. He, C. Yang, and Y. Li, Chem. Mater. 20, 6434 (2008). https://doi.org/10.1021/cm8006827
  8. K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, Chem. Mater. 21, 2607 (2009). https://doi.org/10.1021/cm802022p
  9. H. Zhong, Zhou, Y. Mingfu, Y. He, J. Ye, C. He, C. Yang, and Y. Li, Nanotechnology 18, 025602 (2008).
  10. L. Li, J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, Chem. Mater. 21, 2422 (2009). https://doi.org/10.1021/cm900103b
  11. O. L. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, J. Phys. Chem. 98, 4966 (1994). https://doi.org/10.1021/j100070a004
  12. D. V. Talapin, N. Gaponik, H. Borchert, A. L. Rogach, M. Haase, and H. Weller, J. Phys. Chem. 106, 12659 (2002). https://doi.org/10.1021/jp026380n
  13. E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, and S. Kim, Chem. Mater. 4, 573 (2009).
  14. M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, J. Chem. Phys. 129, 134709 (2008) https://doi.org/10.1063/1.2987707
  15. K. Watanabe, M. Uehara, H. Nakamura, and H. Maeda, Mater. Res. Soc. Symp. Proc. 1064, PP03 (2008).
  16. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, Chem. Mater. 18, 3330 (2006). https://doi.org/10.1021/cm0518022
  17. M. Nanu, J. Schoonman, and A. Goosens, Thin Solid Films 451-452, 193 (2004). https://doi.org/10.1016/j.tsf.2003.10.118
  18. J. Hofhuis, J. Schoonman, and A. Goossens, J. Phys. Chem. C 112, 15052 (2008). https://doi.org/10.1021/jp803307e
  19. J. Alvarez-Garcia, B. Barcones, A. Perez-Rodrigues, A. Romano-Rodrigues, J. R. Morante, A. Janotti, S. -H. Wei, and R. Scheer, Phys. Rev. B 71, 054303(2005).
  20. S. V. Gaponenko, Ch. 5 in Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, (1998).
  21. B. L. V. Prasad, S. I. Stoeva, C. M. Sorensen, and K. J. Klabunde, Langmuir 18, 7515 (2002). https://doi.org/10.1021/la020181d
  22. A. M. Smith, A. M. Mohs, and S. Nie, Nature Nanotech. 4, 56 (2009). https://doi.org/10.1038/nnano.2008.360
  23. M. Quintero, C. Rincon, R. Tovar, and J. C. Woolley, J. Phys:Condens. Matter. 4, 1281 (1992). https://doi.org/10.1088/0953-8984/4/5/008