Browse > Article
http://dx.doi.org/10.14478/ace.2018.1097

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application  

Sim, Sang-Bo (Changsung Nanotech Co., Ltd.)
Han, Jong-Dae (School of Civil, Environmental and Chemical Engineering, Changwon National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 782-788 More about this Journal
Abstract
Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.
Keywords
silver-coated copper particles; core-shell; sonochemical reaction; transmetallation; conductive paste;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. Pajor-Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Effect of carboxylic acids on conductivity of metallic films formed by inks based on copper@silver core-shell particles, Colloids Surf. A, 522, 320-327 (2017).   DOI
2 S.-B. Sim, D.-S. Bae, and J.-D. Han, Preparation of silver nanoparticles by chemical reduction-protection method using 1-decanoic acid and tri-n-octylphosphine, and their Application in Electrically Conductive Silver nanopaste, Appl. Chem. Eng., 27(1), 68-73 (2016).   DOI
3 Y.-W. Shin, K.-B. Kim, S.-J. Noh, and S.-Y. Soh, Effects of the particle size and shape of silver nanoparticles on optical and electrical characteristics of the transparent conductive film with a self-assembled network structure, Appl. Chem. Eng., 29(2), 162-167 (2018).   DOI
4 S. Magdassi, M. Grouchko, and A. Kamyshny, Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability, Materials, 3, 4626-4638 (2010).   DOI
5 H. Nishikawa, S. Mikami, K. Miyake, A. Aoki, and T. Takemoto, Effects of silver coating covered with copper filler on electrical resistivity of electrically conductive adhesives, Mater. Trans., 51, 1785-1789 (2010).   DOI
6 C.-H. Tsa, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, Thermal stability of Cu@Ag core-shell nanoparticles, Corros. Sci., 74, 123-129 (2013).   DOI
7 E. B. Choi and J.-H. Lee, Enhancement in electrical conductivity of pastes containing submicron Ag-coated Cu filler with palmitic acid surface modification, Appl. Surf. Sci., 415, 67-74 (2017).   DOI
8 E. B. Choi and J.-H. Lee, Submicron Ag-coated Cu particles and characterization methods to evaluate their quality, J. Alloys Compd., 689, 952-958 (2016).   DOI
9 R. Zhang, W. Lin, K. Lawrence, and C. P. Wong, Highly reliable, low cost, isotropically conductive adhesives filled with Ag-coated Cu flakes for electronic packaging applications, Int. J. Adhes. Adhes., 30, 403-407 (2010).   DOI
10 C.-H. Hsiao, W.-T. Kung, J.-M. Song, J.-Y. Chang, and T.-C. Chang, Development of Cu-Ag pastes for high temperature sustainable bonding, Mater. Sci. Eng. A, 684, 500-509 (2017).   DOI
11 T.-L. Guo, J.-G. Li, X. Sun, and Y. Sakka, Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules, Mater. Sci. Eng. C, 61, 97-104 (2016).   DOI
12 J. H. Bang and K. S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 22, 1039-1059 (2010).   DOI
13 B. Miljevic, F. Hedayat, S. Stevanovic, K. E. Fairfull-Smith, S. E. Bottle, and Z. D. Ristovski, To sonicate or not to sonicate PM filters: Reactive oxygen species generation upon ultrasonic irradiation, Aerosol Sci. Technol., 48, 1276-1284 (2014).   DOI
14 S. Mosleh, M. R. Rahimi, M. Ghaedi, K. Dashtian, and S. Hajati, Sonochemical-assisted synthesis of CuO/$Cu_2O$/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization, Ultrason. Sonochem., 40, 601-610 (2018).   DOI
15 M. Heshmat, H. Abdizadeh, and M. R. Golobostanfard, Sonochemical assisted synthesis of ZnO nanostructured thin films prepared by sol-gel method, Procedia Mater. Sci., 11, 486-490 (2015).   DOI
16 B. Huang, X. Hao, H. Zhang, Z. Yang, Z. Ma, H. Li, F. Nie, and H. Huang, Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity, Ultrason. Sonochem., 21, 1349-1357 (2014).   DOI
17 H. Y. Jung and S.-W. Lee, Study on antibacterial activity of Ag nanometal-deposited $TiO_2$ prepared by sonochemical reduction method, Appl. Chem. Eng., 25(1), 84-89 (2014).   DOI
18 H.-R. Park, S.-W. Lee, and I.-S. Yoo, Aging effect on the antimicrobial activity of nanometal (Au, Ag)-titanium dioxide nanocomposites, Appl. Chem. Eng., 23(3), 293-296 (2012).
19 L. Pan, L. Li, and Y. Chen, Synthesis of Ag/$Cu_2O$ hybrids and their photocatalytic degradation treatment of p-nitrophenol, Micro Nano Lett., 6(12), 1019-1022 (2011).   DOI
20 S. Tao, M. Yang, H. Chen, M. Ren, and G. Chen, Microfluidic synthesis of Ag@$Cu_2O$ core-shell nanoparticles with enhanced photocatalytic activity, J. Colloid Interface Sci., 486, 16-26 (2017).   DOI
21 W. Li, L. Li, Y. Gao, D. Hu, C.-F. Li, H. Zhang, J. Jiu, S. Nagao, and K. Suganuma, Highly conductive copper films based on submicron copper particles/copper complex inks for printed electronics: Microstructure, resistivity, oxidation resistance, and long-term stability, J. Alloys Compd., 732, 240-247 (2018).   DOI
22 T. Ping, S. Mihua, S. Chengwen, W. Shuaihua, and C. Murong, Enhanced photocatalytic activity of $Cu_2O$/Cu heterogeneous nanoparticles synthesized in aqueous colloidal solutions on degradation of methyl orange, Rare Metal Mater. Eng., 45(9), 2214-2218 (2016).   DOI
23 S. Dehghanpour, A. Mahmoudi, M. Mirsaeed-Ghazi, N. Bazvand, S. Shadpour, and A. Nemati, $Cu_2O$ microsphere, microspherical composite of $Cu_2O$/Cu nanocrystals and various Cu microcrystals: In situ hydrothermal conversion of Cu-aminodiphosphonate complexes, Powder Technol., 246, 148-156 (2013).   DOI
24 X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, and Z. Tang, A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics, J. Alloys Compd., 724, 365-372 (2017).   DOI
25 H. T. Hai, H. Takamura, and J. Koike, Oxidation behavior of Cu-Ag core-shell particles for solar cell applications, J. Alloys Compd., 564, 71-77 (2013).   DOI
26 A. Muzikansky, P. Nanikashvili, J. Grinblat, and D. Zitoun, Ag dewetting in Cu@Ag monodisperse core-shell nanoparticles, J. Phys. Chem. C, 117, 3093-3100 (2013).
27 V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper, Appl. Surf. Sci., 254, 3949-3954 (2008).   DOI
28 C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, Thermal stability of Cu@ Ag core-shell nanoparticles, Corros. Sci., 74, 123-129 (2013).   DOI
29 S.-S. Chee and J.-H. Lee, Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size, J. Mater. Chem. C, 2, 5372-5381 (2014).   DOI
30 M. Grouchko, A. Kamyshny, and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem., 19, 3057-3062 (2009).   DOI
31 C. H. Lee, E. B. Choi, and J.-H. Lee, Characterization of novel high-speed die attachment method at 225 $^{\circ}C$ using submicrometer Ag-coated Cu particles, Scripta Mater., 150, 7-12 (2018).   DOI
32 C. C. Tseng, J. H. Hsieh, S. J. Liu, and W. Wu, Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped $Cu_2O$ thin films, Thin Solid Films, 518, 1407-1410 (2009).   DOI
33 Y.-S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo, and C.-H. Chung, Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation, Appl. Surf. Sci., 389, 865-873 (2016).   DOI
34 A. Pajor-Swierzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation, Colloids Surf. A, 521, 272-280 (2017).   DOI
35 A. Kamyshny, J. Steinke, and S. Magdassi, Metal-based inkjet inks for printed electronics, Open Appl. Phys. J., 4, 19-36 (2011).   DOI
36 C. K. Kim, G.-J. Lee, M. K. Lee, and C. K. Rhee, A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics, Powder Technol., 263, 1-6 (2014).   DOI