• Title/Summary/Keyword: Copper chemical mechanical polishing (CMP)

Search Result 46, Processing Time 0.026 seconds

Particle Removal on Buffing Process After Copper CMP (구리 CMP 후 버핑 공정을 이용한 연마 입자 제거)

  • Shin, Woon-Ki;Park, Sun-Joon;Lee, Hyun-Seop;Jeong, Moon-Ki;Lee, Young-Kyun;Lee, Ho-Jun;Kim, Young-Min;Cho, Han-Chul;Joo, Suk-Bae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Copper (Cu) had been attractive material due to its superior properties comparing to other metals such as aluminum or tungsten and considered as the best metal which can replace them as an interconnect metal in integrated circuits. CMP (Chemical Mechanical Polishing) technology enabled the production of excellent local and global planarization of microelectronic materials, which allow high resolution of photolithography process. Cu CMP is a complex removal process performed by chemical reaction and mechanical abrasion, which can make defects of its own such as a scratch, particle and dishing. The abrasive particles remain on the Cu surface, and become contaminations to make device yield and performance deteriorate. To remove the particle, buffing cleaning method used in post-CMP cleaning and buffing is the one of the most effective physical cleaning process. AE(Acoustic Emission) sensor was used to detect dynamic friction during the buffing process. When polishing is started, the sensor starts to be loaded and produces an electrical charge that is directly proportional to the applied force. Cleaning efficiency of Cu surface were measured by FE-SEM and AFM during the buffing process. The experimental result showed that particles removed with buffing process, it is possible to detect the particle removal efficiency through obtained signal by the AE sensor.

Optimization of Removal Rates with Guaranteed Dispersion Stability in Copper CMP Slurry

  • Kim Tae-Gun;Kim Nam-Hoon;Kim Sang-Yong;Chang Eui-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.233-236
    • /
    • 2004
  • Copper metallization has been used in high-speed logic ULSI devices instead of the conventional aluminum alloy metallization. One of the key issues in copper CMP is the development of slurries that can provide high removal rates. In this study, the effects of slurry chemicals and pH for slurry dispersion stability on Cu CMP process characteristics have been performed. The experiments of copper slurries containing each different alumina and colloidal silica particles were evaluated for their selectivity of copper to TaN and $SiO_{2}$ films. Furthermore, the stability of copper slurries and pH are important parameters in many industries due to problems that can arise as a result of particle settling. So, it was also observed about several variables with various pH.

Planarizaiton of Cu Interconnect using ECMP Process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing(CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical polishing(ECMP) or electro-chemical mechanical planarization was introduced to solve the technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

Planarization technology of thick copper film structure for power supply (전력 소자용 후막 구리 구조물의 평탄화)

  • Joo, Suk-Bae;Jeong, Suk-Hoon;Lee, Hyun-Seop;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.523-524
    • /
    • 2007
  • This paper discusses the planarization process of thick copper film structure used for power supply device. Chemical mechanical polishing(CMP) has been used to remove a metal film and obtain a surface planarization which is essential for the semiconductor devices. For the thick metal removal, however, the long process time and other problems such as dishing, delamination and metal layer peeling are being issued, Compared to the traditional CMP process, Electro-chemical mechanical planarization(ECMP) is suggested to solve these problems. The two-step process composed of the ECMP and the conventional CMP is used for this experiment. The first step is the removal of several tens ${\mu}m$ of bulk copper on patterned wafer with ECMP process. The second step is the removal of residual copper layer aimed at a surface planarization. For more objective comparison, the traditional CMP was also performed. As an experimental result, total process time and process defects are extremely reduced by the two-step process.

  • PDF

Investigation on the Effect of Corrosion Inhibitor on Removal Rate and Surface Characteristic of Cobalt Chemical Mechanical Polishing (부식 방지제에 따른 코발트의 화학 기계적 연마 특성 및 표면 분석)

  • Eun Su Jung;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.140-154
    • /
    • 2024
  • As the trend towards miniaturization in semiconductor integration process, the limitations of interconnection metals such as copper, tungsten have become apparent, prompting research into the emergence of new materials like cobalt and emphasizing the importance of studying the corresponding process conditions. During the chemical mechanical polishing (CMP) process, corrosion inhibitors are added to the slurry, forming passivation layers on the cobalt surface, thereby playing a crucial role in controlling the dissolution rate of the metal surface, enhancing both removal rate and selectivity. This review investigates the understanding of the cobalt polishing process and examines the characteristics and behavior of corrosion inhibitors, a type of slurry additive, on the cobalt surface. Among the corrosion inhibitors examined, benzotriazole (BTA), 1,2,4-triazole (TAZ), and potassium oleate (PO) all improved surface characteristics through their interaction with cobalt. These findings provide important guidelines for selecting corrosion inhibitors to optimize CMP processes for cobalt-based semiconductor materials. Future research should explore combinations of various corrosion inhibitors and the development of new compounds to further enhance the efficiency of semiconductor processes.

Titration methods of $H_2O_2$ in Cu/TaN CMP (Cu/TaN CMP시 $H_2O_2$ 적정방법)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.38-41
    • /
    • 2004
  • The oxidizer plays an important role in the metal chemical mechanical polishing(CMP) slurry. Currently, the oxidizer used in CMP slurry is nearly divided into several kinds such as $Fe(NO_3)_3$, $H_2O_2$, $KIO_3$, and $H_5IO_6$. It is generally known that oxidizer character of $H_2O_2$ is more effective than other oxidizers. In this work, we have been studied the characteristics for the $H_2O_2$ concentration of copper slurry, which can applicable in the recent semiconductor manufacturing process. Also, it plays an important role in the planarization of copper films using copper slurries during micro-electronic device fabrication. In this work, we confirmed that removal rate of Cu/TaN changed by $H_2O_2$ concentration on copper slurry. And we used $KMnO_4$ in the measurement method of $H_2O_2$. In analysis results, we confirmed that the difference of results is large. We thought that the difference was due to organic component existence. So in titration method of $H_2O_2$ concentration, we used $Na_2S_2O_3$ instead of $KMnO_4$ as solution. Consequently, using the titration method, we could calculate correct data reduced error. And $H_2O_2$ concentration has been adjusted to the target concentration of 0.1 wt%.

  • PDF

Study on the Effects of Corrosion Inhibitor According to the Functional Groups for Cu Chemical Mechanical Polishing in Neutral Environment (중성 영역 구리 화학적 기계적 평탄화 공정에서의 작용기에 따른 부식방지제의 영향성 연구)

  • Lee, Sang Won;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.517-523
    • /
    • 2015
  • As the aluminum (Al) metallization process was replaced with copper (Cu), the damascene process was introduced, which required the planarization step to eliminate over-deposited Cu with Chemical Mechanical Polishing (CMP) process. In this study, the verification of the corrosion inhibitors, one of the Cu CMP slurry components, was conducted to find out the tendency regarding the carboxyl and amino functional group in neutral environment. Through the results of etch rate, removal rate, and chemical ability of corrosion inhibitors based on 1H-1,2,4-triazole as the base-corrosion inhibitor, while the amine functional group presents high Cu etching ability, carboxyl functional group shows lower Cu etching ability than base-corrosion inhibitor which means that it increases passivation effect by making strong passivation layer. It implies that the corrosion inhibitor with amine functional group was proper to apply for 1st Cu CMP slurry owing to the high etch rate and with carboxyl functional group was favorable for the 2nd Cu CMP slurry due to the high Cu removal rate/dissolution rate ratio.

Statistical Analysis on Process Variables in Linear Roll-CMP (선형 Roll-CMP에서 공정변수에 관한 통계적 분석)

  • Wang, Han;Lee, Hyunseop;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.139-145
    • /
    • 2014
  • Nowadays, most micro-patterns are manufactured during flow line production. However, a conventional rotary chemical mechanical polishing (CMP) system has a limited throughput for the fabrication of large and flexible electronics. To overcome this problem, we propose a novel linear roll-CMP system for the planarization of large-area electronics. In this paper, we present a statistical analysis on the linear roll-CMP process of copper-clad laminate (CCL) to determine the impacts of process parameters on the material removal rate (MRR) and its non-uniformity (NU). In the linear roll-CMP process, process parameters such as the slurry flow rate, roll speed, table feed rate, and down force affect the MRR and NU. To determine the polishing characteristics of roll-CMP, we use Taguchi's orthogonal array L16 (44) for the experimental design and F-values obtained by the analysis of variance (ANOVA). We investigate the signal-to-noise (S/N) ratio to identify the prominent control parameters. The "higher is better" for the MRR and "lower is better" for the NU were selected for obtaining optimum CMP performance characteristics. The experimental and statistical results indicate that the down force and roll speed mainly affect the MRR and the down force and table feed rate determine the NU in the linear roll-CMP process. However, over 186.3 N of down force deteriorates the NU because of the bending of substrate. Roll speed has little relationship to the NU and the table feed rate does not impact on the MRR. This study provides information on the design parameter of roll-CMP machine and process optimization.

Planarization of Cu intereonnect using ECMP process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Lee, Ho-Jun;Oh, Ji-Heon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF