• 제목/요약/키워드: Coordinate System

검색결과 2,203건 처리시간 0.024초

Comparison of the accuracy of domestic dental intra-oral scanner(e-scanner) and model scanner (국산 치과용 구강스캐너(e-scanner)와 모델스캐너의 정확도 비교)

  • Kim, Busob;Kim, Jungho
    • Journal of Technologic Dentistry
    • /
    • 제41권2호
    • /
    • pp.53-61
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the discrepancy of scan process in dental intra oral scanner by comparing model scanner and anticipate possibility to introduce intra oral scan technique. Methods: 3D superimposition test was conducted to compare the scan discrepancy. The scanners used in this study are the e-oral scanner, the D750 model scanner, and the high precision CMM(3D Coordinate Measuring Machine). The standard of accuracy verification is ISO 5725-1; trueness and precision. Master model was manufactured by dental stone and scanned 5 times by intra oral, model scanner. Reference data was scanned 5 times by high accuracy CMM to evaluate the trueness. Results: Trueness of D750 scanner were $7.4{\mu}m$ $5.1{\mu}m$ $6.8{\mu}m$ at an abutment, an occluasal, a specific area. and trueness of e-scanner were $20.2{\mu}m$ $27.4{\mu}m$ $37.8{\mu}m$ at an abutment, an occluasal, a specific area. Precision of D750 scanner was $7.04{\mu}m$, e-scanner was $15.95{\mu}m$. Conclusion: When conducting in vitro test, The mean difference of trueness between e-scanner and D750 were $12.8{\mu}m$ at an abutment area, $22.3{\mu}m$ at an occlusal area, $31.0{\mu}m$ at a specific area and $8.91{\mu}m$ in precision. The scan discrepancies are within the range of clinical acceptance.

A Lightweight Hardware Implementation of ECC Processor Supporting NIST Elliptic Curves over GF(2m) (GF(2m) 상의 NIST 타원곡선을 지원하는 ECC 프로세서의 경량 하드웨어 구현)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • 제23권1호
    • /
    • pp.58-67
    • /
    • 2019
  • A design of an elliptic curve cryptography (ECC) processor that supports both pseudo-random curves and Koblitz curves over $GF(2^m)$ defined by the NIST standard is described in this paper. A finite field arithmetic circuit based on a word-based Montgomery multiplier was designed to support five key lengths using a datapath of fixed size, as well as to achieve a lightweight hardware implementation. In addition, Lopez-Dahab's coordinate system was adopted to remove the finite field division operation. The ECC processor was implemented in the FPGA verification platform and the hardware operation was verified by Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol operation. The ECC processor that was synthesized with a 180-nm CMOS cell library occupied 10,674 gate equivalents (GEs) and a dual-port RAM of 9 kbits, and the maximum clock frequency was estimated at 154 MHz. The scalar multiplication operation over the 223-bit pseudo-random elliptic curve takes 1,112,221 clock cycles and has a throughput of 32.3 kbps.

Development of Planetary Ephemeris Generation Program for Satellite (위성 탑재용 천문력 생성 프로그램 개발)

  • Lee, Kwang-Hyun;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제47권3호
    • /
    • pp.220-227
    • /
    • 2019
  • The satellites in orbit use a sun reference vector from solar model based the ephemeris. To get the ephemeris, we use DE-Series, an ephemeris developed by the Jet Propulsion Laboratory (JPL), or the reference vector generation formula proposed by Vallado. The DE-Series provides the numerical coefficients of Chebyshev polynomials, which have the advantage of high precision, but there is a computational burden on the satellite. The Vallado's method has low accuracy, although the sun vector can be easily obtained through the sun vector generation equation. In this paper, we have developed a program to provide the Chebyshev polynomial coefficients to obtain the sun position coordinates in the inertial coordinate system. The proposed method can improve the accuracy compared to the conventional method and can be used for high - performance, high - precision nano satellite missions.

The Spatially Closed Universe

  • Park, Chan-Gyung
    • Journal of the Korean earth science society
    • /
    • 제40권4호
    • /
    • pp.353-381
    • /
    • 2019
  • The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time, and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the world reference frame. The information that determines the kinematics of the geometry of the universe such as size and expansion rate has been included in the new metric. The Einstein's field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.

Analysis of land use change for advancing national greenhouse gas inventory using land cover map: focus on Sejong City

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • 제47권4호
    • /
    • pp.933-940
    • /
    • 2020
  • Land-use change matrix data is important for calculating the LULUCF (land use, land use change and forestry) sector of the national greenhouse gas inventory. In this study, land cover changes in 2004 and 2019 were compared using the Wall-to-Wall technique with a land cover map of Sejong City from the Ministry of Environment. Sejong City was classified into six land use classes according to the Intergovernmental Panel on Climate Change (IPCC) guidelines: Forest land, crop land, grassland, wetland, settlement and other land. The coordinate system of the land cover maps of 2004 and 2019 were harmonized and the land use was reclassified. The results indicate that during the 15 years from 2004 to 2019 forestlands and croplands decreased from 50.4% (234.2 ㎢) and 34.6% (161.0 ㎢) to 43.4% (201.7 ㎢) and 20.7% (96.2 ㎢), respectively, while Settlement and Other land area increased significantly from 8.9% (41.1 ㎢) and 1.4% (6.9 ㎢) to 35.6% (119.0 ㎢) and 6.5% (30.3 ㎢). 79.㎢ of cropland area (96.2 ㎢) in 2019 was maintained as cropland, and 8.8 ㎢, 1.7 ㎢, 0.5 ㎢, 5.4 ㎢, and 0.4 ㎢ were converted from forestland, grassland, wetland, and settlement, respectively. This research, however, is subject to several limitations. The uncertainty of the land use change matrix when using the wall-to-wall technique depends on the accuracy of the utilized land cover map. Also, the land cover maps have different resolutions and different classification criteria for each production period. Despite these limitations, creating a land use change matrix using the Wall-to-Wall technique with a Land cover map has great advantages of saving time and money.

Resource Allocation for D2D Communication in Cellular Networks Based on Stochastic Geometry and Graph-coloring Theory

  • Xu, Fangmin;Zou, Pengkai;Wang, Haiquan;Cao, Haiyan;Fang, Xin;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4946-4960
    • /
    • 2020
  • In a device-to-device (D2D) underlaid cellular network, there exist two types of co-channel interference. One type is inter-layer interference caused by spectrum reuse between D2D transmitters and cellular users (CUEs). Another type is intra-layer interference caused by spectrum sharing among D2D pairs. To mitigate the inter-layer interference, we first derive the interference limited area (ILA) to protect the coverage probability of cellular users by modeling D2D users' location as a Poisson point process, where a D2D transmitter is allowed to reuse the spectrum of the CUE only if the D2D transmitter is outside the ILA of the CUE. To coordinate the intra-layer interference, the spectrum sharing criterion of D2D pairs is derived based on the (signal-to-interference ratio) SIR requirement of D2D communication. Based on this criterion, D2D pairs are allowed to share the spectrum when one D2D pair is far from another sufficiently. Furthermore, to maximize the energy efficiency of the system, a resource allocation scheme is proposed according to weighted graph coloring theory and the proposed ILA restriction. Simulation results show that our proposed scheme provides significant performance gains over the conventional scheme and the random allocation scheme.

A Lightweight Hardware Accelerator for Public-Key Cryptography (공개키 암호 구현을 위한 경량 하드웨어 가속기)

  • Sung, Byung-Yoon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제23권12호
    • /
    • pp.1609-1617
    • /
    • 2019
  • Described in this paper is a design of hardware accelerator for implementing public-key cryptographic protocols (PKCPs) based on Elliptic Curve Cryptography (ECC) and RSA. It supports five elliptic curves (ECs) over GF(p) and three key lengths of RSA that are defined by NIST standard. It was designed to support four point operations over ECs and six modular arithmetic operations, making it suitable for hardware implementation of ECC- and RSA-based PKCPs. In order to achieve small-area implementation, a finite field arithmetic circuit was designed with 32-bit data-path, and it adopted word-based Montgomery multiplication algorithm, the Jacobian coordinate system for EC point operations, and the Fermat's little theorem for modular multiplicative inverse. The hardware operation was verified with FPGA device by implementing EC-DH key exchange protocol and RSA operations. It occupied 20,800 gate equivalents and 28 kbits of RAM at 50 MHz clock frequency with 180-nm CMOS cell library, and 1,503 slices and 2 BRAMs in Virtex-5 FPGA device.

Airspeed Estimation Through Integration of ADS-B, Wind, and Topology Data (ADS-B, 기상, 지형 데이터의 통합을 통한 대기속도 추정)

  • Kim, Hyo-Jung;Park, Bae-Seon;Ryoo, Chang-Kyung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제50권1호
    • /
    • pp.67-74
    • /
    • 2022
  • To analyze the motion of aircraft through computing the dynamics equations, true airspeed is essential for obtaining aerodynamic loads. Although the airspeed is measured by on-board instruments such as pitot tubes, measurement data are difficult to obtain for commercial flights because they include sensitive data about the airline operations. One of the commonly available trajectory data, Automatic Dependent Surveillance-Broadcast data, provide aircraft's speed in the form of ground speed. The ground speed is a vector sum of the local wind velocity and the true airspeed. This paper present a method to estimate true airspeed by combining the trajectory, meteorological, and topology data available to the public. To integrate each data, we first matched the coordinate system and then unified the altitude reference to the mean sea level. We calculated the wind vector for all trajectory points by interpolating from the lower resolution grid of the meteorological data. Finally, we calculate the true airspeed from the ground speed and the wind vector. These processes were applied to several sample trajectories with corresponding meteorological data and the topology data, and the estimated true airspeeds are presented.

Proposal of Network RTK-based Boundary Surveying Drone Using Mobile GCS (Mobile GCS를 이용한 Network RTK 기반 경계 복원 측량 드론)

  • Jeong, Eun-ji;Jang, Min-seok;Lee, Yon-sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권12호
    • /
    • pp.1942-1948
    • /
    • 2021
  • The cadastre in Korea was established with the outdated technology of the Japanese colonial period, and thus currently 15% of the Korea domestic land does not match the cadastral map. Accordingly, the government has been establishing the Korean cadastre under the name of 'Cadastral Re-investigation Project' and is changing the origin of the survey to the world geodetic system. Assuming that the project is completed, we propose a drone boundary survey method that can be used to easily survey using the exact digital cadastral information. The developed mobile GCS application can control the drone and acquire the boundary point coordinates recorded in the cadastre, and the drone automatically flies to mark the boundary points. The developed prototype of drone made a tour along the 6 boundary points in 2 minutes.

Calculation of Satellite's Power Generation by the Earth Albedo (지구 알베도에 의한 위성의 생산전력 계산)

  • Choi, Won-Sub;Kim, Kiduck;Kim, Hae-Dong
    • Journal of Space Technology and Applications
    • /
    • 제1권1호
    • /
    • pp.76-84
    • /
    • 2021
  • Because solar panels of normal satellites are faced to the sun, the power generation by the Earth Albedo is almost neglected in satellite's power analysis. However, many cubesats don't have deployable solar panels and in this case the Earth Albedo is not negligible because solar panels are in six sides facing different directions. In this paper, we calculated satellite's power generation by the Earth Albedo. We divided the Earth's surface into grids based on polar coordinate system. We modeled power generation in each solar cell by reflection on these grids. We simulated 1 U cubesat which flies in sun synchronous orbit and 500 km altitude so that we calculated satellite's power generation by the Earth Albedo.