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Abstract: The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we

introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time,

and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The

simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the

separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the

world reference frame. The information that determines the kinematics of the geometry of the universe such as size and

expansion rate has been included in the new metric. The Einstein’s field equations with the new metric imply that closed,

flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is

determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary,

equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and

finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world

reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the

special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent

with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles,

redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially

closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite

values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive

acceleration at the earliest epoch is improbable.
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1. Introduction

The main goal of modern cosmology is to build a

cosmological model that is consistent with astronomical

observations. To achieve this goal, tremendous efforts

have been made both on theories and on observations

since the general theory of relativity was developed.

So far the most successful model of the universe is

the Friedmann-Robertson-Walker (FRW) world model

(Friedmann 1922, 1924; Robertson 1929; Walker 1935).

The FRW world model predicts reasonably well the

current observations of the cosmic microwave background

(CMB) radiation and the large-scale structures in the

universe. The precisely determined cosmological parameters

of the FRW world model imply that our universe is

consistent with the spatially flat world model dominated

by dark energy and cold dark matter (ΛCDM) with

adiabatic initial condition driven by inflation (Spergel

et al. 2007; Tegmark et al. 2006; see Planck Collaboration

2018a for recent results).

Although the flat FRW world model is currently the

most reliable physical world model, one may have the

following fundamental questions on the nature of the

FRW world model. First, mathematically, if a manifold

is flat, then the Riemann curvature tensor should

vanish, and vice versa. However, the spatial part of

the Riemann curvature (or Ricci) tensor of the flat

FRW world model does not vanish unless the cosmic

expansion speed and acceleration are zeros, which

implies that the physical space of the flat FRW world

is not geometrically flat but curved. Only its spatial
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section at a constant time is flat. In the FRW metric, 
the kinematics of the geometry of the universe is 
described by the expansion scale factor   alone. 
Generally, the kinematic state of an expanding space 
is completely determined by its size and expansion 
rate at a given time. Thus, it is natural to expect that 
the space-time metric for the non-stationary universe 
should include the two parameters [  and  ; 
Sec. 2].

Secondly, the cosmic evolution equations of the 
FRW world model can be derived from an application 
of the Newton’s gravitation and the local energy 
conservation laws to the dynamical motion of an 
expanding sphere with finite mass density (Milne 
1934; McCrea and Milne 1934). Besides, the Newton’s 
gravitation theory has been widely used to mimic 
the non-linear clustering of large-scale structures in 
the universe even on the horizon-sized -body 
simulations (Colberg et al. 2000; Park et al. 2005). 
On large scales, the close connection between the 
FRW world model and the Newton’s gravitation law 
is usually attributed to the fact that the linear 
evolution of large-scale density perturbations satisfies 
the weak gravitational field condition.1) However, 
one may have a different point of view that the 
Newton’s gravitational action at a distance appears 
to be valid even on the super-horizon scales in the 
FRW world just because the world model does not 
reflect the full nature of the relativistic theory of 
gravitation.

Thirdly, according to the FRW world model, the 
universe at sufficiently early epoch (≳) is 
usually regarded as flat since the curvature parameter 
contributes negligibly to the total density. The present 
non-flat universe should have had the density 
parameter approaching to    with infinitely high 
precision just after the big-bang (flatness problem). 
On the other hand, if we imagine the surface of an 
expanding balloon with positive curvature, then the 

curvature of the surface is always positive and 
becomes even higher as the balloon is traced back 
to the earlier epoch when it was smaller. This 
prediction from the common sense contradicts the 
FRW world model.

Observationally, the flat ΛCDM universe is 
favored by the joint cosmological parameter estimation 
using the CMB (Hinshaw et al. 2007; Page et al. 
2007), large-scale structures (Cole et al. 2005; 
Tegmark et al. 2004), type Ia supernovae (SNIa; 
Riess et al. 2007; Wood-Vasey et al. 2007), Hubble 
constant (Freedman et al. 2001; Macri et al. 2006; 
Sandage et al. 2006), baryonic acoustic oscillation 
data (Eisenstein et al. 2005), and so on. However, 
the Wilkinson Microwave Anisotropy (WMAP) CMB 
data alone is more compatible with the non-flat 
FRW world model (Spergel et al. 2007, §7.3; 
Tegmark et al. 2006, Table III). Besides, some 
parameter estimations using SNIa data or angular 
size-redshift data of distant radio sources alone 
suggest a possibility of the closed universe 
(Clocchiatti et al. 2006; Jackson and Jannetta 2006). 
The WMAP 5-year data analysis (Hinshaw et al. 
2009) shows that the WMAP data alone favors the 
spatially closed universe with the current curvature 
density parameter  

 in the tilted 
non-flat ΛCDM FRW universe (Dunkley et al. 
2009). The analysis of Planck 2018 CMB data alone 
gives  

 with 95% confidence level 
(Planck Collaboration 2018a, 2018b). Although the 
CMB data alone poorly constrains the magnitude of 
the curvature, it precisely determines the sign of the 
curvature, excluding flat and open universes 
( ≥ ) with over 95% significance level.2)

The questions above and the observational 
constraints on the cosmological model may bring 
about possibilities of non-flat or non-FRW world 
models. Interestingly, Einstein (1922) claimed that 
our universe is spatially bounded or closed. The 

1) Hwang and Noh (2006) show that the relativistic fluid equations perturbed to second order in a flat FRW background world 
coincide exactly with the Newtonian results, and prove that the Newtonian numerical simulation is valid in all cosmological 
scales up to the second order.
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primary reason for his preference to the closed 
universe is because Mach’s idea2) (Mach 1893; Misner 
et al. 1973, §21.12) that the inertia depends upon the 
mutual action of bodies is compatible only with the 
finite universe, not with a quasi-Euclidean, infinite 
universe. According to Einstein’s argument, an infinite 
universe is possible only if the mean density of 
matter in the universe vanishes, which is unlikely 
due to the fact that there is a positive mean density 
of matter in the universe.3) 

In this paper, we propose the general world model 
for homogeneous and isotropic universe which supports 
Einstein’s perspective on the physical universe. The 
outline of this paper is as follows. In Sec. 2, we 
review and criticize the FRW metric and present a 
new method to define the metric where the 
kinematics of the geometry of the universe is fully 
considered. The metric and the cosmic evolution 
equations for flat, closed, and open universes are 
derived in Sec. 3. It will be shown that our universe 
is spatially closed. In Sec. 4, we reconstruct cosmic 
evolution histories of the closed world models, and 
derive interesting properties of the closed universe. 
In Sec. 5, we discuss whether the inflation theory is 
compatible with the closed world model or not. 
Conclusion follows in Sec. 6.

Throughout this paper, we adopt a sign 
convention   for the metric tensor , and 
denote a 4-vector in space-time as          
and a 3-vector in space as        or p . The 
Einstein’s field equations are

  


   Λ, (1)

where    
  is the Ricci tensor,    

  the 

Ricci scalar,  the energy-momentum tensor,  
the Newton’s gravitational constant, and Λ the 
cosmological constant. The Riemann curvature 
tensor is given by  

  
  

  
  



 
  

 , with the Christoffel symbol  
 




   . The energy-momentum 

tensor for perfect fluid is

  b b b, (2)

where b and b are background energy density and 
pressure of ordinary matter and radiation, and   is 
the 4-velocity of a fundamental observer. We 
assume that the cosmological constant acts like a 
fluid with effective energy density Λ  Λ and 
pressure Λ Λ. The limiting speed in the special 
theory of relativity is set to unity (≡).

2. How to define metric for 
homogeneous and isotropic universes?

(a) Friedmann-Robertson-Walker metric
The starting point for constructing a physical 

world model is to define the space-time separation 
between two neighboring events, i.e., the line 
element 

  , (3)

where   is the metric tensor which determines 
all the geometric properties of space-time in a 
system of coordinates. In Eq. (3), the two events are 
generally distinct in space and time, separated by 
   . In the special theory of 

2) Park and Ratra (2018a, 2019a, 2019b) constrained untilted non-flat dark energy models using the Planck 2015 CMB data, 
type Ia supernovae data, baryonic acoustic oscillations data, Hubble parameter measurements, and growth rate observations. 
The estimated curvature parameter () implies the spatially closed universe, deviating from the spatial flatness by over , 
,  in ΛCDM, XCDM, and CDM models, respectively. The constraint on the spatial curvature from the non-CMB 
data alone are also consistent with, but weaker than, that from the joint analysis of CMB and non-CMB data sets (Park and 
Ratra 2019c).

3) However, in the appendix to the second edition of his book (Einstein 1922), Einstein summarized Friedmann’s world models 
and discussed a universe with vanishing spatial curvature and non-vanishing mean matter density, which differs from his original 
argument.
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relativity, a separation between two distinct events is 
given by

   r, (4)

which is invariant in all inertial reference frames. 
The metric   diag  is called the 
Minkowski metric.

The early development in modern cosmology was 
focused on finding the metric appropriate for the real 
universe whose space-time structure is inconsistent 
with the Minkowski metric due to the expansion of 
the universe and the presence of matter in it. As a 
pioneer, Einstein (1917) developed a model of the 
static closed universe that is spatially homogeneous 
and isotropic, by adopting a metric with    and 
   from the static condition. Friedmann (1922) 
developed a more general world model that includes 
both stationary and non-stationary universes of 
positive spatial curvature, by assuming that one can 
make    and    by an appropriate choice 
of time coordinate. Weyl (1923) postulated that in a 
cosmological model the world lines of particles (e.g., 
galaxies) form a 3-bundle of nonintersecting geodesics 
orthogonal to a series of space-like hypersurfaces, 
which implies that  depends on    only and 
  . Robertson (1929) argued that the line element 
may be expressed as      for a 
universe where the matter has on the whole the 
time-like geodesics   const as world lines, and 
the coordinate  can be interpreted as a mean time 
which serves to define proper time and simultaneity 
for the entire universe. Walker (1935) also argued that 
the coordinates can be chosen so that the line element 
for the non-stationary space-time manifold has a form 
   , where     is the 
metric of the 3-dimensional Riemannian space of 
constant curvature, if the space has spherical symmetry 
about each of time-like geodesics.

The resulting line element for spatially homogeneous 
and isotropic universe (FRW metric) is concisely written 
as

   

    
  sin  

(5)

where   is a cosmic expansion scale factor,  
is the comoving-space separation between events, 
and   sinh ,  , and sin  for open 
( ), flat (  ), and closed ( ) spaces, 
respectively (see Weinberg 1972 for a detail 
derivation of the FRW metric). The corresponding 
cosmic evolution equations known as Friedmann 
equations are







b b

Λ (6)

and


 






b 






Λ . (7)

The dot denotes a differentiation with respect to 
time.

Let us examine the property of the FRW line 
element that has been considered as the general metric 
for homogeneous and isotropic universe. To determine 
the metric, we need to locate space-time coordinates 
of neighboring events. So it is essential to specify ‘a 
given moment of time’, the simultaneity for the entire 
universe. In the Minkowski space-time, once an 
inertial reference frame is set, the simultaneity for the 
entire space is guaranteed. However, in the curved 
space-time, the concept of the simultaneity is 
ambiguous because generally there is no global inertial 
reference frame. The traditional method to avoid this 
problem was to replace the concept of simultaneity 
with that of a 3-dimensional space-like hypersurface, 
a slice of simultaneity (Robertson 1929; Misner et 
al. 1973, §27.3). At each event on a space-like 
hypersurface, there is a locally inertial frame whose 
plane of simultaneity coincides locally with the 
hypersurface and whose 4-velocity is orthogonal to 
the hypersurface. Planes of simultaneity defined by 
locally inertial frames at various events on the 
hypersurface overlap to form the space-like 
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hypersurface itself. Therefore, in the FRW world ‘at 
a given moment of time’ just translates into ‘on a given 
space-like hypersurface’. The space-time spanned by 
the universe is represented as foliation by space-like 
hypersurfaces at a series of moments of time.

Figure 1 is a simplified picture showing how 
spatial and temporal separations of the FRW line 
element is related to space-time events on the 
expanding hypersurfaces. Here, the local time 
coordinate  of a given event is the proper time as 
measured along the world line of the cosmological 
fluid element that passes through the event. Let us 
imagine two locally inertial frames specified at 
events 1 and 2, infinitesimally separated by  
on the hypersurface at . After an infinitesimal time 
interval , the two frames will be located at events 
1′ and 2′, separated by  on the hypersurface 
at . The FRW line element (5) is given as a 
combination of the temporal separation  and the 
spatial separation .

The simultaneity for the entire universe as the 
space-like hypersurface or the overlapping planes of 
simultaneity of the locally inertial frames appears to 
be accurate. However, due to the following reasons, 
we see that even the planes of simultaneity of two 
locally inertial frames separated by an infinitesimal 
comoving separation  do not coincide with an 
accuracy better than . 

First, on a space-like hypersurface at a constant 
time, two planes of simultaneity of the locally 
inertial frames do not coincide but deviate with an 
angle  for the non-flat hypersurface (Of course, 
the angle is zero for the flat hypersurface). Such an 
effect of the spatial curvature has been reflected in 
the space-space part of the FRW metric (), which 
describes the geometry of the hypersurface at a 
constant time in terms of the global coordinate 
system      . As is known, the metric for 
3-dimensional space-like hypersurfaces of constant 
curvature is unique (Misner et al. 1973, §27.6).

Secondly, since the universe is expanding, as 
observed in the inertial frame at event 1, the frame 

at event 2 recedes with relative velocity , 
and vice versa. For the expanding flat hypersurface, 
the deviation angle between two planes of 
simultaneity is given by arctan ≃ as in 
the special relativity, which is also comparable to 
the order of the infinitesimal comoving separation 
. Although the readings of clocks at events 1 and 
2 (1′ and 2′) are always synchronous in the FRW 
viewpoint where the kinematic state (expansion 
speed) of a hypersurface at an instant of time is 
ignored, they are not as viewed in the locally inertial 
frame at event 1 or 2 (1′ or 2′). Even if the clocks 
are forced to be synchronized at , the 
synchronization will not be maintained thereafter.

We note that the effects of curvature and 
expansion become negligible only for a pair of 
locally inertial frames whose separation is far 
smaller than . Thus, the conditions for the 
time-time and time-space components of the FRW 
metric,    and   , which have been 

Fig. 1. A simplified picture showing the relationship 
between the FRW line element and space-time events on 
the expanding universe. Shown are two hypersurfaces at 
different time epochs (  and ) infinitesimally separated 
by   

 . The local time coordinate   is defined as 
the proper time as measured along the world line of the 
cosmological fluid. Denoted as 1 and 2 are two 
neighboring events with a spatial separation 

 on 
the same hypersurface at a constant time  , and likewise 
for events 1′ and 2′ on the hypersurface at  . 
Reproduced from Park (2012).
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justified by the local proper time of a locally inertial 
frame and the orthogonality of the world line of the 
locally inertial frame to the space-like hypersurface, 
respectively (Misner et al. 1973, §27.4), are valid 
extremely locally, and are not relevant to the 
geometrical and kinematic properties of the 
expanding universe, but relevant to the locally 
inertial frame itself.

Furthermore, we see a serious inconsistency of the 
FRW line element with the definition of line 
element. As shown in Fig. 1, in the FRW metric (5) 
the real-space separation  is measured for 
events on the hypersurface at a constant time (e.g., 
events 1 and 2 at ),4) while the temporal separation 
 is measured for events at different time epochs 
(e.g., events 1 and 1′). In other words, spatial and 
temporal distances are related to two different pairs 
of events, in contradiction to the general definition 
of the line element [Eq. (3)] in which only a pair of 
events should be involved.

Generally, the kinematics of a free particle is 
determined by its position and velocity at a given 
time. Similarly, the kinematics of the expanding 
universe is determined by its size [] and 
expansion speed [], aside from the gravitational 
field over the entire space, which is given by the 
Einstein’s field equations and the energy content of 
the universe. In the FRW metric, however, the 
kinematics of the geometry of the universe is 
described by a single function of time, the expansion 
scale factor [] alone. In this sense, the FRW 
metric does not include the full information about 
the kinematics of the geometry of the universe. In 
conclusion, the FRW metric describes the expansion 
of the homogeneous and isotropic universe 
incompletely.

(b) Global reference frame and new metric
In the previous subsection, it has been shown that 

the effect of cosmic expansion on the space-time 
geometry has not been correctly reflected in the 
FRW metric. The primary reason comes from the 
fact that the local time coordinates of locally inertial 
frames have been used as global time to specify the 
simultaneity for the universe. As a result, the 
expansion speed of the space-like hypersurface has 
been ignored in the metric. Besides, the way the line 
element is defined does not follows the general rule 
that a pair of neighboring events that are distinct in 
space and time should be used. These problems can 
be overcome by defining a line element based on a 
global inertial reference frame, by which the 
kinematics of the geometry of the universe is 
completely described. The method proposed here can 
be applicable to the kinematics of an expanding 
2-dimensional surface such as plane or sphere in the 
3+1 Minkowski space-time.

To derive the general form of line element for 
homogeneous and isotropic universe, let us introduce 
a 4+1 Minkowski space-time composed of 
4-dimensional Euclidean space and 1-dimensional 
time, and assume that our universe is spatially a 
3-dimensional hypersurface with uniform curvature 
embedded in the 4-dimensional space. In fact, the 
hypersurface with negative curvature (open space) 
cannot be embedded in the Euclidean space. For the 
present we restrict our attention to flat and closed 
spaces, deferring the discussion about the open space 
to Sec. 3(c).

Throughout this paper, we call a reference frame 
constructed on the high dimensional Minkowski 
space-time as world reference frame. It is a global 
system of reference provided with a rigid measuring 
rod and a number of clocks to indicate position and 
time (world time)5) of an event. The space-time 
distance between events on the universe will be 
measured based on this fiducial system. The 
simultaneity for the entire universe is specified by 

4) The spatial separation of the FRW line element is defined in the same way as the length of a rigid rod is measured at fixed 
time in an inertial reference frame of the special relativity.

5) The world time coordinate is equivalent to the time coordinate of any locally inertial frame on the stationary universe. 
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the global time coordinate of the world reference 
frame.

Although the world reference frame has been 
introduced for mathematical convenience, it is useful 
in that the space-time coordinates of the frame are 
independent of the dynamics of the universe. As will 
be shown later, the proper time as measured by an 
observer in the universe does not elapse uniformly, 
being affected by the cosmic expansion. Thus, it is 
natural to use the world time coordinate with 
uniform lapse for a fair comparison of physical 
phenomena in the expanding universe. The space 
coordinates of the world reference frame can be 
conveniently used to describe the geometry of a 
3-dimensional hypersurface embedded in the 
4-dimensional Euclidean space [see Sec. 3(b)].

An example of the expanding 1-dimensional flat 
hypersurface (with uniform and zero curvature) is 
shown in Fig. 2. At initial time , a hypersurface 
is given as a straight line, on which there are 
equally spaced events (open circles) with mutual 
comoving separation , all at rest with respect to 
the comoving coordinate system whose spatial 
coordinate  is related to the real-space coordinate 
by   . After an infinitesimal time , the 
straight line has been expanded, and the proper 
separation between neighboring events on the 
hypersurface has increased from  to 
. 

We define the line element  as the space-time 
separation between two distinct events located at 
   and   , which correspond to events 
1 and 2′ in Fig. 2 without loss of generality. The 
spatial separation between events 1 and 2′ as 
measured in the world reference frame is 
′   ≃      
up to the first order of  and . Therefore, we get

′   ′

  

  , (8)

where the effect of cosmic expansion on the 
physical separation between events has been 

included explicitly. Note that the line element (8) 
implies that generally  is a function of both time- 
and space-coordinates and  ≠, which violates 
the Weyl’s postulate unless  . As shown in Sec. 
3(a), the homogeneity of the universe also implies 
 .

The line element for non-flat spaces can be defined 
analogously. As an example of the closed space, Fig. 
2 shows an expanding 1-dimensional circle 
(1-sphere) with radius   at two distinct 
(infinitesimally separated) world times. The 
expanding circle is a 1-dimensional hypersurface with 
uniform and positive curvature embedded in the 
2-dimensional Euclidean space, -plane. Events 
on the circle are equally spaced out with  , where 
  is a comoving coordinate related to -coordinate 
by   sin . The line element is defined as the 
space-time separation between distinct events 1 and 
2′, written concisely as 

′   ′  

  , (9)

where ′  ′ ′  is the spatial separation 
between events 1 and 2′ as measured in the 
world reference frame. The spatial distances 
projected on - and -axes are given by 
′   sin   sin  and ′ 

 cos   cos , respectively. In 
the second equality of Eq. (9), ′ and ′ have 
been expanded up to the first order of  and  . 
From the two cases, it is clear that the expansion of 
space affects both space and time intervals in the 
line element, which is the main difference from the 
FRW metric. Generally, the line element (metric) 
should reflect the fact that the cosmic expansion is 
a kinematic phenomenon. 

Eq. (8) implies that the FRW line element for the 
1-dimensional flat space is valid only at a local 
region around an observer at   . The FRW line 
element for the closed space also has a similar form 
to the flat case, i.e.,    , where, to be 
consistent with Eq. (9),  should be interpreted as 
a proper time interval measured by a local observer 
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(  


). To such an observer who may be 

located between events 1 and 2 (or between events 

1′ and 2′ after ), the spatial separation between 

neighboring events appears to be   (e.g., the arc 

length between events 1 and 2 in Fig. 2). 

Therefore, both FRW line elements describe the 

space-time separation between events near an 

observer, which is the local nature of the FRW 

metric.

3. Metric and evolution equations of 
expanding universes

In this section, we define the general forms of 

metric for homogeneous and isotropic universes of 

various spatial curvature types, and derive the 

corresponding cosmic evolution equations from the 

Einstein’s field equations.

(a) Flat universe

Suppose that the universe is spatially an expanding 

3-dimensional flat hypersurface (with uniform and 

zero curvature) embedded in a 4-dimensional 

Euclidean space with the Cartesian coordinates 

    . The embedded flat space is infinite, 

homogeneous, and isotropic, and is Euclidean at an 

instant of time. To simplify the problem, let us 

assume that the hypersurface is orthogonal to the 

-axis so that the fourth Cartesian coordinate can be 

ignored. Then, each event on the flat hypersurface 

is labelled by the world time  and the real-space 

position r defined as 

rx, (10)

where x is the comoving-space position vector 

with the Cartesian coordinates    

sin cos sin sin cos , expressed in 

terms of the comoving spherical coordinate 

      with   x  



.

With the help of the differential of Eq. (10)

r x  x, (11)

the line element is defined as the space-time 

separation between distinct events located at  r  

and rr:

r

 

x
 x⋅x  x

 

 (12)

 sin 

The metric tensor in the coordinate system 

       is

 











   

   

   

   sin

 (13)

Fig. 2. Schematic diagrams showing the expansion of 
() flat and () closed 1-dimensional homogeneous and 
isotropic hypersurfaces. Events denoted as open circles 
are equally spaced out on two hypersurfaces that are 
infinitesimally separated by . Note that the time axis, 
which is orthogonal to - and  -axes, is omitted in (). 
The line element is defined as the space-time separation 
between two distinct events 1 and 2′ (see text).
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We calculate the Christoffel symbols and the 
Riemann curvature tensor from the metric tensor. 
The non-zero Christoffel symbols 

   
   are


  


 

  
  

  





  

 sin  
  

  





 sin cos 

  cot

(14)

One easily verifies that the Riemann curvature tensor 
vanishes: 

 
   (15)

Thus the Ricci tensor  and the Ricci scalar  
also vanish. This demonstrates explicitly that the 
space-time curvature of the expanding flat universe 
is zero.

The proper time interval as measured by an 
observer in arbitrary motion is obtained from Eq. 
(12) as

  






 

 






, (16)

where    is the magnitude of proper 
3-velocity,    is the 3-velocity in the 
comoving coordinate system, and   

 . For an 
observer who is at rest (  ) in the comoving 
coordinate system (hereafter a comoving observer), 
we get the proper time interval

  

 (17)

and the 4-velocity

 



 




    (18)

of the observer. Inserting Eqs. (13) and (18) into Eq. 
(2) gives the energy-momentum tensor, whose 
non-zero components are

  b

    b



 





b



 b

   b

  bsin

(19)

From Eqs. (13), (15) and (19), the Einstein’s field 

equations (1) reduce to

b b 
Λ

 (20)

The b and b should not be negative because they 
are energy density and pressure of ordinary matter 
and radiation, suggesting that

b  b   and Λ   (21)

Even if non-zero energies of matter and radiation 
with an equation of state (20) can exist, the total 
energy density and pressure should vanish:

b Λ   and b Λ   (22)

Therefore, in the domain of classical physics the flat 
universe is empty, which is consistent with the 
Einstein’s claim that the infinite universe has 
vanishing mean density (Einstein 1922).

Eq. (20) does not give any information about the 
cosmic expansion history. Actually, the homogeneity 
condition constrains the flat universe to be stationary. 
The homogeneity of the universe means that the 
physical conditions such as energy density, pressure, 
and the curvature of space are identical at every event 
on the hypersurface at a constant time (Misner et al. 
1973, §27.3). In Eq. (16), the proper time interval of 
an arbitrary observer depends on the choice of the 
comoving coordinate system. The proper time of an 
observer moving faster at farther distance from the 
origin goes slower. Only at    or if  , it becomes 
   , the same form of the proper time 
as in the special relativity, irrespective of the choice 
of the comoving coordinate system. Since the 
dependence of the proper time interval on the choice 
of reference frame is contradictory to the homogeneity 
condition, the flat universe should be stationary ( ). 
In conclusion, the flat universe is empty and stationary, 
and therefore is equivalent to the Minkowski 
space-time.

The formalism given above for ≠ is still 
applicable to a finite region of the expanding flat 
space. 
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(b) Closed universe

The homogeneous and isotropic closed space is 
usually described by the spatially finite hypersphere 
with uniform and positive curvature. By extending 
the example in Fig. 2, let us consider our universe 
as an expanding 3-sphere of curvature radius  , 
embedded in a 4-dimensional Euclidean space where 
each point is labelled by the Cartesian coordinates 
     and the world time . The equation of 
the 3-sphere in ---  coordinate system is

         (23)

where  is the radial distance in --  coordinate 
system. The coordinates , ,   have transformation 
relations with the spherical coordinates ,  ,  as 
  sin cos,   sin sin, and   cos .

The line element is defined as the space-time 
distance between two infinitesimally separated events 
located at       and     

   :

         , (24)

where  is a spatial separation as measured in 
the world reference frame. For two distinct events 
on the expanding 3-sphere, the spatial separation 
is written as6)

     

   sin  
 



   sin  sin 

(25)

where   has been removed by Eq. (23) and its 
differential

     (26)

and  has been replaced with the comoving coordinate 
  by a parametrization

  sin  ≤  ≤  (27)

and its differential

 sin cos  (28)

Therefore, the general form of line element for the 
non-stationary closed universe is

  



   sin sin 
(29)

The metric tensor in the coordinate system 
    is 


 diag


 sin  sinsin (30)

We calculate the Christoffel symbols and the 
Ricci tensor from the metric tensor. The non-zero 
Christoffel symbols are


 





 

 





 

 





sin


 





sinsin


  

  
  


 

 sincos


 sincossin


  

  cot 
 sincos 

  cot

(31)

The non-zero components of the Ricci tensor are

 
 







 














  sin   sin sin

(32)

and the Ricci scalar is

  
 






 






 (33)

From Eq. (29), we obtain a proper time interval 
as measured by an observer in arbitrary motion as 

   

 (34)

and thus express the 4-velocity of the observer as

6) The 3-dimensional version of Eq. (25),      sin , is mathematically equivalent to the one presented in 
Dubrovin et al. [1984, §9(2)], which is a separation between two neighboring points in the 3-dimensional Euclidean space, 
expressed in terms of spherical coordinates   .
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 



  v (35)

where 

  

 (36)

is a contraction factor. Note that the contraction 
factor depends on the expansion speed of the 
universe as well as the peculiar motion of the 
observer. For a comoving observer, the energy-
momentum tensor for perfect fluid is obtained by 

inserting the 4-velocity   

     

into Eq. (2):

  diagb

 b

bsin bsin sin
(37)

where b and b are energy density and pressure as 
defined in the world reference frame. Inserting Eqs. 
(30), (32), (33) and (37) into (1), we get evolution 
equations for homogeneous and isotropic closed 
universe. They are concisely written as











 


b b 

Λ
(38)

and








 


b 

Λ
 (39)

Combining Eqs. (38) and (39) gives a continuity 
equation for energy density and pressure


   (40)

where  and  are total energy density and pressure 
of radiation (R), matter (M), and the cosmological 
constant (Λ):     and     
(  R M Λ ). Note that b  R M. The continuity 
equation is equivalent to  

  , with a semicolon 
denoting a covariant derivative. It is worth noting 
that the time-time component of the metric tensor 
(  

) is positive according to the sign 
convention adopted. The positiveness of the 

left-hand side of Eq. (39) suggests that the total 
energy density should be positive in the closed 
universe (  ).

Introducing an equation of state     for 
each species , we obtain a solution to Eq. (40) as 
 ∝

. Thus the total energy density is 

written as    
. The subscript 

 denotes the present epoch . Hereafter we call 
universes dominated by radiation, matter, and the 
cosmological constant as radiation-universe (R-u), 
matter-universe (M-u), and Λ-universe (Λ-u), 
respectively. The energy density evolves as R∝ 
in the radiation-universe (R  ), M ∝ in the 
matter-universe (M  ), and Λ  const in the Λ
-universe (Λ ). For the cosmological constant, 
Λ  Λ.

Let us define a dimensionless function of redshift 
 ≡ ,

  ≡
 












R
 M 

 Λ 

 






R 





M 






Λ
 




(41)

where   . Throughout this paper, a 
function of time  will be expressed in terms of 
redshift   interchangeably. The radius parameter R 
(M) can be interpreted as a free-fall time or radius 
for the gravitational collapse of a stationary radiation- 
(matter-) universe with the present radiation (matter) 
energy density, and Λ  Λ as the minimum radius 
of Λ-universe. By introducing another dimensionless 
quantity

 ≡


 


   

 


 


  

 (42)

we can rewrite Eq. (39) as

R M Λ   (43)

which holds during the whole history of the 
universe. The  can be interpreted as the fraction 
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of energy of species  [see Sec. 4(e)].

(c) Open universe
We now consider the geometry of homogeneous 

and isotropic expanding 3-dimensional space with 
uniform and negative curvature. Such a negatively 
curved space cannot be embedded in a 4-dimensional 
Euclidean space. At an instant of time, it is a 
pseudosphere with imaginary radius  (Landau and 
Lifshitz 1975, §111). By replacing  with  in 
Eq. (23), we obtain an expression analogous to Eq. 
(25) for a spatial separation between two distinct 
events on the expanding 3-pseudosphere,7)

     

    sin 
 



   sinh sin 

(44)

where the radial distance      in -
-  coordinate system has been parametrized with the 
comoving coordinate   by

  sinh  ≥  (45)

Therefore, the line element for the non-stationary 
open universe is 

  



 sinh  sin 
(46)

The non-zero components of the Ricci tensor 
calculated from the metric (46) are

 
 







 














  sinh   sinh sin

(47)

and the Ricci scalar is

  
 






 






 (48)

For a comoving observer (  ) with 4-velocity 

  

    , the energy-momentum 

tensor for perfect fluid becomes

  diagb

 b

bsinh bsinh sin
(49)

The resulting evolution equations for the open 
universe are obtained in the same way as those for 
the closed universe are obtained. They are











 


b b 

Λ
(50)

and








 


b  

Λ
 (51)

Combining Eqs. (50) and (51) also gives the same 
continuity equation as Eq. (40). Since the time-time 
component of the metric tensor (  

) is 
always positive, Eq. (51) suggests that the total 
energy density should be negative in the open 
universe (  ).

(d) Our Universe is spatially closed
In Secs. 3(a)-(c), we have demonstrated that flat 

universe is equivalent to the Minkowski space-time, 
which is empty and stationary, and that closed and 
open universes have positive and negative energy 
densities, respectively. In other words, the curvature 
of the universe is determined by the sign of mean 
energy density, not by the ratio of the energy 
density to the critical density as in the FRW world. 

7) The 3-dimensional hypersurface with uniform and negative curvature can also be represented as a pseudosphere of radius 
, satisfying the equation       , embedded in a 4-dimensional pseudo-Euclidean space R


 . Here, the spatial 

separation between two neighboring points on the non-stationary pseudosphere has the same form as Eq. (44) aside from the 
sign,          sinh sin . See Dubrovin et al. (1984), §3.2(12) for the 
3-dimensional case in R


 .
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The open universe is unrealistic because the mean 
density of the universe is known to be positive from 
astronomical observations. Therefore, we conclude 
that our universe is spatially closed and finite. The 
spatial closure of the universe has been deduced 
from the purely theoretical point of view. Our 
conclusion verifies the Einstein’s claim for the 
finiteness of the universe.

The new world model does not contradict the 
homogeneity and isotropy conditions, since the 
physical condition is identical everywhere on the 
space-like hypersurface (homogeneity) and a 
comoving observer cannot distinguish one of his/her 
spatial directions from the others by any local 
physical measurement (isotropy). For a given 
curvature type, the geometrical structure of the 
space-like hypersurface of the new world is 
equivalent to that of the FRW world (compare 

new 
with 

FRW at fixed time).

(e) The Friedmann equations
In the non-flat universes, the proper time interval 

of a comoving observer is related to the world time 
by

  

 (52)

where   for closed and  for open universes. 
The proper time goes slower (faster) than the world 
time in the closed (open) universe, with non-uniform 
lapse. Only in the flat universe, the proper time 
elapses uniformly (  ).

From Eq. (52), we obtain relations between 
world- and proper-time derivatives of the curvature 
radius:




 

 













(53)

and



 

 









 (54)

where the proper time  acts as the time of non-flat 
FRW world models. As will be shown in Sec. 4(e) 
[Eq. (92)], energy density and pressure defined in 
the world reference frame are equivalent to those 
measured by the comoving observer. Therefore, 
Friedmann equations (6) and (7) for non-flat 
universes can be derived from the new cosmic 
evolution equations [Eqs. (38) and (39) for closed 
and Eqs. (50) and (51) for open universes] by the 
time-parametrization (52). This, along with the local 
nature of the FRW metric as discussed in Sec. 2, 
implies that the Friedmann equations describe the 
evolution of the local universe around a comoving 
observer.

Table 1 lists possible ranges of total energy 
density in the FRW and new world models. In the 
new world models, the energy density is strictly 
positive, zero, and negative for closed, flat, and open 
universes, respectively. On the other hand, the FRW 
world models have rather complicated ranges of 
energy density. From Eq. (53), one finds that 
 ≥  for closed, and  ≤    for 
open universes. Thus, Eq. (7) plus constraints on 
 suggests that the closed FRW world model 
have positive energy density larger than or equal to 
, and that the open model accommodate 
only negative energy density not smaller than 
. Note that the positive energy density 
appears to be allowed in the open FRW world 
model if the constraint on  is not imposed.

The Friedmann equations for the flat universe 
(  ) cannot be derived with any world-proper 
time relation, but can be obtained by neglecting the 
curvature term  in Eq. (7) for the closed 
model, resulting in  ≥ . The flat FRW world 
model is valid only within regions where the effect 

Table 1. Possible Ranges of Total Energy Density 
in the FRW and New World Models

Curvature Type FRW World New World
closed  ≥  

flat  ≥   

open  ≤   
Equality signs for the FRW world models correspond to 
cases of stationary universes ( , ≠).
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of curvature is negligible or the distance scale of 
interest is far smaller than the curvature radius. In 
other words, the flat FRW world is an approximation 
of the closed universe with large curvature radius. 
Its hypersurface is a tangent space of a comoving 
observer on the 3-sphere.

All the differences between FRW and new world 
models come from a difference between reference 
frames adopted. In later sections of this paper, to 
describe physical phenomena in the expanding 
closed universe, we use both the world reference 
frame and the comoving observer’s frame. The 
former has a global time  with uniform lapse, while 
the latter has a local time  whose lapse depends on 
the cosmic expansion speed. An event on the 
expanding 3-sphere may be labelled by coordinates 
      or      . By omitting the 
curvature radius  that is a function of , we regard 
the coordinate system        as equivalent 
to the world reference frame. The comoving 
observer’s frame is a system of physical space and 
proper time coordinates adopted by an observer like 
us whose comoving coordinate       is 
fixed during the expansion of the universe. Actually, 
the comoving observer’s frame is equivalent to the 
locally inertial frame.

4. Physical and astronomical aspects 
of the expanding closed universe

In this section, we investigate interesting properties 
of the expanding closed universe, such as time-varying 
light speed, cosmic expansion history, energy-momentum 
relation of particles, redshift, and cosmic distance 
and time scales. All the quantities, not otherwise 
specified, are defined and expressed in the world 
reference frame, and secondarily in the comoving 
observer’s frame. In the latter frame, all the physical 
quantities and their evolution are the same as those 
in the closed FRW world. 

(a) Time-varying light speed and cosmic expansion 
speed

In the special theory of relativity, the speed of light 
is constant and equal to the limiting speed (  ), 
which applies to the Minkowski space-time, or 
equivalently to the flat universe. In the expanding 
closed universe, however, the light speed is less than 
or equal to the limiting speed. From the photon’s 
geodesic equation (  ), one can express the speed 
of light as

 ≡

 


 (55)

It should be noted that the light speed varies with 
time, depending on the cosmic expansion speed  
and satisfying  


 . Both speeds cannot 

exceed the limiting speed ( ≤  ≤  and 
 ≤≤ ). The cosmic expansion speed goes to 
unity as the redshift goes to infinity because   
evolves as  in the radiation-dominated era 
[Eq. (41)]. Therefore, we expect   and    at 
the beginning of the universe.

On the other hand, the comoving observer always 
measures the speed of light as unity because the 
observer’s proper time interval varies in the same 
way as the world-frame light speed does [Eqs. (52) 
and (55)]. Besides, the cosmic expansion speed in 
the comoving observer’s frame has no limit 

( 

 ∞).

In the open universe, the speed of light is 
  


 ≥ : the light propagates faster than 

the limiting speed. There is no upper limit on the 
cosmic expansion and the light speeds in the world 
reference frame. However, the comoving observer 
perceives that the speed of light is always unity and 
that the cosmic expansion speed is bounded to unity 

( 

 ), as discussed in Sec. 3(e).
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(b) Cosmic evolution history
The evolution of homogeneous and isotropic 

universe is described by the evolution of physical 
quantities during the history of the universe. The 
most important quantity is the curvature radius . 
Although it is not easy to get the general solution to 
Eq. (39), there exist analytic solutions for special 
cases of the universe dominated by energy of the 
single species. For radiation-universe (M  , Λ  ), 
the curvature radius is given by

  RsinR  ≤  ≤ R (56)

where R  R
  R is the 

maximum curvature radius of the radiation-universe. 
At   , the universe expands with the maximum speed 
and zero acceleration ( ,  ). The positive 
acceleration is not allowed in the radiation-universe.

For matter-universe (R  , Λ  ), the solution 
for the curvature radius is

  M M


M  ≤  ≤ M (57)

Table 2. Cosmological Parameters of the Two Closed World Models.

Parameters Symbols Model I Model II

Input
CMB temperature cmb  K  K

Matter density M  

Dark energy density Λ  

Hubble constant   

Derived
Curvature radius   Mpc  Mpc
Speed of light 

  

Expansion speed 
  

Expansion acceleration  ×  Mpc  ×  Mpc 

Cosmic age (in world time)   Gyr  Gyr
Cosmic age (in proper time)   Gyr  Gyr

Radiation free-fall radius R  Gpc  Gpc
Matter free-fall radius M  Mpc  Mpc
Minimum radius of Λ-u Λ  Mpc  Mpc
Maximum radius of R-u R  Mpc  Mpc
Maximum radius of M-u M  Gpc  Gpc

3-volume of the universe  × Mpc × Mpc

Total radiation energy R ×  erg ×  erg
Total matter energy M ×  erg ×  erg
Total dark energy Λ ×  erg ×  erg

Fraction of radiation energy R ×  × 

Fraction of matter energy M  

Fraction of dark energy Λ  

Based on parameters of a non-flat FRW world model that best fits with the WMAP 3-year data only (Spergel et 
al. 2007).

Based on parameters of a non-flat FRW world model that jointly fits with the CMB, SNIa, -ray bursts, the shape 
parameter   M, Hubble constant, matter density (M ), and big-bang nucleosynthesis data (Wright 2007). The 
Hubble constant is an average of recent measurement values.
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where M  M
  M is the 

maximum curvature radius of the matter-universe. 
The initial condition    has been assumed. 
The cosmic expansion acceleration is negatively 
constant in the matter-universe (M). Due to 
the negative acceleration, the expanding universe 
containing only radiation and matter is bound to 
contract into the single point.

If the universe does not contain the ordinary 
matter and radiation but is dominated by the 
cosmological constant or dark energy (Λ-universe), 
Eq. (39) becomes




± 

Λ


± 



Λ 



 (58)

where Λ ≡Λ  Λ is the 
(minimum) radius of the Λ-universe at initial time 
 . For the expanding Λ-universe, we get

  Λ  
  ≥   (59)

The expansion speed and acceleration of the Λ
-universe are    Λ  

 and 
  Λ Λ  

, which go over 
asymptotically into unity and zero, respectively, as  
goes to infinity. Starting with    Λ,    , 
and    Λ, the Λ-universe expands eternally.

It is interesting to consider a universe dominated 
by energy of a hypothetical species with an equation 
of state H  (Kolb 1989). This universe 
(H-universe) has a simple expansion history

  H  ≥  (60)

where H  H. The important property 
of the H-universe is that ∝ and  . The 
universe expands with the constant speed. The 
energy density of the hypothetical species evolves 
as H ∝. For an extreme case of H   

(H  ∞), the H-universe expands with the limiting 
speed (  ).

To reconstruct the evolution history of the closed 
universe, we have adopted two world models that are 
consistent with the recent astronomical observations. 
The model parameters, which are listed in Table 2, 
are based on a non-flat ΛCDM FRW world model 
that best fits with the WMAP CMB data only (Model 
I;    kmsMpc, M  , Λ  ; 
Spergel et al. 2007, §3.3) and on another model that 
jointly fits with the CMB and other astronomical data 
(Model II;    kmsMpc, M  , 
Λ  ; Wright 2007), where    
kmsMpc is the Hubble constant, and  is the 
current density parameter of the FRW world model. 
The Hubble constant of Model I is quite lower than 
the popular value of Model II, but is allowed because 
the low Hubble constant has been reported from 
observations of Cepheids plus SNIa 
(  ± ±  kmsMpc; Sandage et al. 
2006) and of eclipsing binaries (   
kmsMpc; Bonanos et al. 2006).8)

Using the FRW model parameters as input, we 
calculate radius parameters R, M, and Λ from a 
formula     


. The 

radiation energy density has been calculated from 
R  B

cmb
  [see Sec. 4(f)] with the CMB 

temperature cmb   K (Mather et al. 1999). 
For simplicity, the neutrino contribution to the 
radiation energy density has been omitted. The 
present curvature radius  has been obtained from 
the relation

  
  R

 M
 Λ 



(61)

The basic parameters characterizing the closed 
world model are the curvature radius of the universe 
() and the radius parameters (R, M, Λ) at the 

8) The cosmological parameters of Model I are very similar to the recent values of the non-flat ΛCDM model constrained with 
Planck 2018 CMB data alone (omegak_plikHM_TTTEEE_lowl_lowE; Planck Collaboration 2018b): 

  
   kms  Mpc  , 

M   
  , Λ   

   (68% confidence limits). 
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present time.
It is interesting to note that converting parameters 

of the flat FRW world model into those of the new 
closed model always gives limiting values of 
  ∞,   , and   . The flat FRW world is 
a limiting case of the closed universe with infinite 
curvature radius. In such a limit, the proper time 
becomes frozen (  ).

The evolution histories of the two closed world 
models are summarized in Figs. 3-6 below, where 
we have also plotted analytic solutions for radiation, 
matter, and Λ-universes (   is assumed for Λ-u). 
All the numerical values given in the text are based 
on Model I. The evolution of curvature radius of the 
closed world model is shown in Fig. 3, where we 
have performed a numerical integration of Eq. (39) 
to obtain  . Note that the solution of H-universe 
with infinite energy density greatly approximates the 
evolution of curvature radius of our universe, which 

differs from    by maximally about 2% at 
≃ Gyr, as shown in the small panel.

Figure 4 shows the relation between the proper 
time of a comoving observer and the world time, 
obtained by integrating Eq. (52). The total elapsed 
time until the present time, the age of the universe, 
is denoted as a star at    Gyr and    
Gyr [see Sec. 4(g)]. The - relations expected in 
radiation, matter, and Λ-universes are written in 
analytic forms as

  RcosR R­u (62)
 

M




M

 M 


M

 M 


 


arcsinM

 M 



 M­u (63)

and

  Λ ln




Λ





Λ
 

 


 Λ­u (64)

respectively. Inserting Eq. (62) into (56) gives 
   R , which goes over into ∝ 
if  ≪ R, the behavior of a scale factor in the 
radiation-dominated FRW universe.

Fig. 4. The proper time of a comoving observer  versus 
the world time  (thick and thin solid curves for Model 
I and II, respectively). The - relations expected in 
radiation, matter, and Λ-universes are shown as dotted 
(R), dashed (M), and long-dashed (Λ) curves, 
respectively. The star indicates    Gyr and 


  Gyr. 

Fig. 3. Evolution of curvature radius  over the world 
time  (thick solid curve; Model I). For comparison, the 
curvature radius of radiation, matter, and Λ-universes are 
shown as dotted (R), dashed (M), and long-dashed (Λ) 
curves, respectively. The small panel shows the fractional 
difference of the curvature radius of our universe relative 
to   (≡ in unit of percent; thick and 
thin solid curves for Model I and II, respectively). The 
stars denote quantities at the present time 

  Gyr 
[Model I; see Sec. 4(g)]. A rough estimate of redshift is 
given by ≈

 .
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Figure 5 shows the time-variation of cosmic 
expansion speed (top) and speed of light (bottom). 
At the present time, the universe is expanding faster 
than the light by a factor of  with   and 
   (denoted as stars). The speed of light in 
radiation, matter, and Λ-universes are written as

  sinR  R R­u (65)

  


M

 M 


 M  M­u (66)

and

 Λ  


Λ
 Λ Λ­u (67)

respectively. The behavior of time-varying light 
speed implies that photons are frozen (  ) when 
the universe expands with the maximum speed, e.g., 
at the beginning or far in the future of the universe. 

Figure 6 shows the history of cosmic expansion 
acceleration calculated from





 (68)

which has been obtained by combining Eqs. (38) 
and (39). In the radiation-dominated era, the 
expansion acceleration had gradually decreased from 
zero, and became negatively constant during the 
matter-dominated era (  - Gyr). Afterward, 
the universe has been decelerated until    Gyr 
(   Gyr,   ) from which it starts to 
accelerate positively. The transition epoch 
corresponds to the point of maximum (minimum) 
speed of light (expansion speed). The universe 
arrives at the maximum acceleration at    Gyr 
(   Gyr,  ). The present universe is 
on a stage before the maximum acceleration. The 
future universe will expand eternally with asymptotic 
acceleration of zero.

(c) Energy-momentum relation of particles
Now we define energy and momentum of a free 

particle with rest mass   in the closed universe. 
Here, we mean the rest mass by the intrinsic mass 
of the particle that is independent of its peculiar 
motion and the dynamics of the universe. Thus   

Fig. 6. Evolution of cosmic expansion acceleration  in 
unit of Mpc   (thick and thin solid curves for Model I 
and II, respectively). The acceleration in radiation, 
matter, and Λ-universes are shown as dotted (R), dashed 
(M), and long-dashed (Λ) curves, respectively. The star 
denotes the acceleration at the present time.

Fig. 5. Variation of (top) cosmic expansion speed  and 
(bottom) speed of light  over the world time  (in unit 
of the limiting speed of the special relativity; thick and 
thin solid curves for Model I and II, respectively). The 
relation  


  holds. The speed of light in radiation, 

matter, and Λ-universes are shown as dotted (R), dashed 
(M), and long-dashed (Λ) curves. The stars denote 
quantities at the present time. 
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is the mass as measured in a locally inertial frame 
comoving with the particle. It is also equivalent to 
the rest mass in the stationary universe. The action 
for the free material particle moving along a 
trajectory with end points A and B has the form 
(Landau and Lifshitz 1975, §8)

 
A

B


A

B

  (69)

where the Lagrangian

 

 (70)

goes over into   in the limit of 
 ≪  and  . The motion of the particle is 
determined from the principle of least action, 
   (e.g., Landau and Lifshitz 1975, 

§87), resulting in the geodesic equation






 









  (71)

From the Lagrangian, we calculate energy and 
momentum of the material particle. The 3-momentum 
of the particle is obtained from   , with 
individual components   ,   sin , 
and   sin sin . The energy of the particle 
is given by

p    









 (72)

and the relativistic mass by

r  p   (73)

Both energy and mass of a particle are tightly 
related to the expansion speed of the universe. For 
a comoving particle with a fixed comoving coordinate 
(  ), the energy and the relativistic mass 
become p  


 and r  


, 

respectively.
Let us define the 4-momentum vector of a particle 

as

   n  


p
 


n (74)

where  is the magnitude of the proper momentum 
defined as      and n  is a unit 
vector indicating the direction of motion of the 
particle. According to this definition, the particle’s 
energy is the time component of the covariant 
4-momentum     p n . From the 
square of the 4-momentum

   (75)

we obtain an energy-momentum relation

p
   


 (76)

which goes over into p
    in the limit of 

 . One important expectation from Eq. (76) is 
that the energy of a material particle vanishes when 
 , e.g., at the beginning of the universe.

The equation of motion of a particle with small 
peculiar velocity ( ≪ ) is obtained from the 
space component of Eq. (71) as











    (77)

where any quadratic of  has been dropped. The 
solution to this equation

∝




(78)

shows how the proper peculiar velocity of a particle 
evolves as a result of the cosmic expansion.

From Eqs. (74) and (76), the energy and the 
4-momentum of a massless photon are

  

 (79)

and

 










 


n






 (80)

where  is the photon’s proper spatial momentum. 
The photon’s energy and spatial momentum are 
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usually expressed as photon’s frequency and inverse 
wavelength multiplied by the Planck constant 
(   and   ). Therefore, Eq. (79) is 
equivalent to

    

 (81)

A comoving observer measures frequency and wavelength 
of the same photon as c  


 and c  . 

Thus, cc   in the locally inertial frame. The 
subscript c denotes a quantity measured by the 
comoving observer.

(d) Doppler shift and cosmological redshift of 
photons

The stretch of photon’s wavelength is induced by 
the receding motion of an observer from a light 
source (Doppler shift), or by the cosmic expansion 
(cosmological redshift).

First, let us consider the Doppler shift. For simplicity, 
the cosmic expansion speed is assumed to be fixed. 
Suppose that an observer with 4-velocity    n  
is moving away from a light source emitting photons 

with 4-momentum   em

 emn , and 

is receiving photons from the source. The observed 
momentum of a photon is given by the inner product 
of   and :

ob   





cos

em (82)

where em  and ob are the proper spatial momenta 
of emitted and observed photons, respectively, and 
n⋅n  cos (   for receding and    
for approaching observers). The ratio of momenta 
(or energies) of observed to emitted photons for the 
longitudinal Doppler effect (  ) is

em

ob
em

ob
 


 

 
 (83)

where  ≡ is the light speed in the comoving 
coordinate system. The ratio for the transversal 
Doppler effect (  ) is

em

ob
em

ob





 (84)

The two formulas for the Doppler effect are similar 
in form to those in the special relativity.

Next, for the cosmological redshift, let us suppose 
that photons, emitted at world time  from a light 
source at comoving coordinate  , have arrived at 
the origin at . Using the photon’s geodesic 
equation and assuming that photons have traveled 
radially by the symmetry of space, we get






′ 









′






′ ′


 

′ ′
(85)

where the minus sign in front of the second integral 
indicates that photons have propagated from the 
distant source to the origin. The  and  are the 
world time intervals during which a photon’s wave 
crest propagates by the amount of its wavelength at 
the points of emission and observation, respectively 
(i.e.,   ). The third equality holds because the 
integral does not change after the infinitesimal time 
intervals  and .

Manipulating Eq. (85) gives the frequency ratio of 
emitted to observed photons,




 






 













 






 



≡

(86)

The cosmological time dilation function   is 
useful for comparing physical quantities at past and 
present epochs. The variation of   is shown in 
Fig. 7. The corresponding function in the FRW 
world model,  , has a similar value to   only 
at low redshift (≲), going to infinity at infinite 
redshift. The   is almost constant during the 
radiation-dominated era with the maximum value of

∞  R M ΛR   (87)
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From Eqs. (81) and (86), the photon’s frequency 
and wavelength vary as 

∝




and ∝ (88)

Because the wavelength of a photon increases in 
proportional to , the redshift is equal to the fractional 
difference between wavelengths at the points of 
observation and emission of the photon: 
    ob emem . Besides, the photon’s 
energy and spatial momentum vary as

∝




and ∝


 (89)

From Eqs. (56), (57), and (59), one finds that 
  const (R-u), ∝ (M-u), and ∝ 
(Λ-u). In the comoving observer’s frame, both 
photon’s energy and spatial momentum always vary 
as .

(e) Total energy in the Universe
The conservation of energy in the classical physics 

is closely related to the invariance of physical laws 
under a time-translation (Noether’s theorem), which 
applies to the physics in the Minkowski space-time. 
In general relativity there is not necessarily a time 
coordinate with the translation-symmetry, so the 
conservation of energy is not generally expected. 
However, in an asymptotically flat region or in a 
locally inertial frame, it is possible to define the 
conserved energy. For this reason, it has been usually 
said that there is not a global but a local energy 
conservation law.

Let us estimate the total energy in the universe 
based on the definition of energy in Sec. 4(c). First, 
we need to define the volume element. The 
4-dimensional volume element is given by

          (90)

where   is the determinant of the metric tensor . 
We obtain the 4-volume of the universe from 

   






′ . The proper 

3-volume of the universe is the time-derivative of :

 


  


  




 (91)

The factor 

 appears as a natural contraction 

effect due to the expansion of the universe. At the 
present time,   ×  Mpc. One can verify 
that the 3-volume of the universe evolves as ∝ 
(R-u), ∝ (M-u), and ∝ (Λ-u). Note that 
c  ∝ in the comoving observer’s frame 

and thus   

c.

If there are  comoving particles with rest mass 
  in the universe, then the matter energy density is 

M 

p




c





c


 Mc (92)

Therefore, matter energy densities both in the world 
reference and the comoving observer’s frames are 
equivalent to each other, which also applies to the 
radiation energy density if   is replaced with  in 
Eq. (92). The matter energy density is related to the 
matter density M by M  M because 
M  r  c


  M


 .

The total energy of each species  is calculated 

Fig. 7. Variation of  along with redshift (thick solid 
curve; Model I). The upper bound value of  at 
infinite redshift is . For comparison, the cosmological 
time dilation factor  in the FRW world model is 
shown as a dashed curve.
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from

    





 (93)

The present values of total radiation, matter, and 
dark energies (R, M, Λ) are listed in Table 2. 
In radiation, matter, and Λ-universes, the total 
energy evolves as R  const, M∝, and 
Λ∝, respectively. On the other hand, Rc∝, 
Mc  const, and Λc   in the comoving 
observer’s frame, implying that the radiation energy 
is infinite at the initial time, and the matter energy 
is always constant.

Figure 8 shows the variation of total radiation, 
matter, and dark energies during the history of the 
universe (thick solid curves), together with that of 
energy fraction parameters (; thin solid curves). 
The total radiation energy remained constant in the 
radiation-dominated era (≲ Gyr), and thereafter 
has decreased. The total matter energy was zero at 
  , arrived at the maximum value at    Gyr 
(   Gyr), and then has decreased, going back 
to zero far in the future. The total dark energy has 
continuously risen up from zero as the universe 
expands. We can estimate the total rest mass in the 
universe by transforming the total matter energy into 
  M


 ≈⊙, which corresponds 

to about  galaxies with a typical mass of 
⊙.

From the definition of energy fraction parameters 
[Eqs. (42) and (43)], one finds that  is a 
conserved quantity such that

    const, (94)

where  is the total energy density. Thus, the ratio 
of present to past total energies in the universe is 
obtained as










  (95)

where    (long dashed curve in Fig. 8) and 
  ×  erg. The initial amount of total energy 
in the universe is   ∞  ×  erg. 

Since only the radiation contributes to the total energy 
at   , the same value is obtained from 
  R  R∞  with the help of 
R  R  deduced from Eq. (86).

According to the definition of energy in this 
paper, the total energy is not conserved in the 
expanding closed universe, but increases with time. 
Especially, the total energy is finite at the beginning 
of the universe.

(f) Energy density, pressure, and temperature 
in thermal equilibrium

We describe the evolution of energy density, 
pressure, and temperature of gas in the early 
universe (see Kolb and Turner 1990 for details). Our 
discussion is restricted to the relativistic gas particles 
in thermal equilibrium. The particles are assumed to 
have low rest mass compared to their kinetic energy.

The number of particles of species  per unit 
spatial volume  per unit momentum volume  
can be expressed as

Fig. 8. Variation of total radiation (R), matter (M ), 
and dark (Λ ) energies in unit of   erg over the 
world time  (thick solid curves; Model I), together with 
that of total energy   R M Λ  (long dashed 
curve). Thin solid curves represent the variation of the 
corresponding energy fraction parameters (R , M , Λ ; 
R M Λ  ) with a dimensionless unit. The 
vertical dotted line indicates  .
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 

 
  

 (96)

where  is the spin-degeneracy of the particle,  is 
the particle distribution function for species , 
equivalent to the mean number of particles 
occupying a given quantum state, and   . 
Assuming zero chemical potential, we can write 
  exppB ± , where plus and minus 
signs are for fermions (f) and bosons (b), 
respectively, B is the Boltzmann constant, and  
is the thermodynamic temperature of species . The 
proper spatial and momentum volume elements in 
the world reference frame are given by

       

c

 


   


c

(97)

where c and c are proper volume elements in 
the comoving observer’s frame. Note that 
  cc. The momentum volume element 
is written as   


 for isotropic 

gas particles with proper momentum .
The energy density of the relativistic gas is 

obtained by integrating over the momentum space 
the particle’s energy multiplied with its distribution 
function:

 

 p  

 


∞




pB ±




 




B
 






∞


 ±






 




 B
 



f and
 




 B
 



b

(98)

where  ≡pB and p ≃

 for the 

relativistic gas. 
The pressure of the relativistic gas is obtained in 

a similar way:

 

 dd 




 


∞




pB ± 


 




(99)

where d and d are proper momentum and velocity 

in one direction: d  dp

  and d

   
for isotropic gas. The relativistic gas acts like 
radiation, with an equation of state    and the 
energy density varying as  ∝. Therefore, from 
Eq. (99) the thermodynamic temperature of the 
relativistic gas evolves as

 ∝




 (100)

In the comoving observer’s frame, c∝. From 
a formula of the entropy density    B, 
one can verifies that the total entropy    of the 
relativistic gas is constant. 

For photons, the quantity   BR is invariant 
during the cosmic expansion history because the 
photon’s frequency varies in the same way as the 
temperature does. Since  is also frame-independent 
(  c), we have R  Rcc  Rc


. 

The present CMB temperature in the world 
reference frame is R  Rc


   K 

(Rc  cmb). From Eq. (100), the ratio of past to 
present radiation temperatures is

R

R
 













 






  (101)

which enables us to estimate the radiation temperature 
at the past epoch. For example, at the beginning of 
the universe R  R∞   K, while it is 
infinite in the comoving observer’s frame. The 
behavior of   implies that R  const in the 
radiation-universe.

The epoch of radiation-matter equality is 
determined from the condition M  R:

eq R

M
 M

R 


  (102)

At this epoch (eq  ×  Gyr, eq   yr), 
the size of the universe was eq   Mpc and the 
radiation temperature was Req  Req   K, 
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or Rceq  Rceq   K.
To summarize, as judged in the world reference 

frame, the early universe was cold and all the 
physical processes in it were extremely slow. 
Especially, the universe started from a regular 
(non-singular) point in the sense that physical 
quantities have finite values at the initial time. The 
singular nature of the FRW universe comes from the 
fact that the flow of the proper time was frozen 
(  ) at   .

(g) Cosmic distance and time scales
Lastly, we consider cosmic distance and time 

scales in the closed world model. As the most 
popular distance measure, the coordinate distance 
(C) to a galaxy at redshift   is obtained by 
integrating the photon’s geodesic equation 

(  

),

C  C  









′






 ′  ′ 

′


(103)

Here C  is the comoving coordinate distance. 
For sufficiently large , Eq. (103) goes over into 

C ≈




′′  , which is equivalent to the 

coordinate distance in the flat FRW world model. 
The coordinate distance in the matter-universe has 
an analytic form

C  arctan



M

 


 







arctan



M

 










M­u

(104)

We can derive other astronomical distances based 
on luminosity and angular size of distant sources. 
For the luminosity distance, let us imagine that a 
light source at redshift   has intrinsic bolometric 
luminosity c as measured at the source. Since both 
photon’s energy and arrival rate vary in proportion 

to  in the locally inertial frame, the flux of the 
light source as measured by the present comoving 
observer can be written as


L



c



sinC

c 

 


 (105)

where L is the luminosity distance to the source9),

L   sinC (106)

The angular size distance (A) to a galaxy with 
physical size g and angular size g is given by

A  g

g
g

 g


sinC
 (107)

The recession velocity (rec  ) of a galaxy has 
also been used as a distance measure in the local 
universe. By integrating    from the 
definition of redshift, we get

 



 

 ′ 




′




′ (108)

where     
   

is the Hubble parameter. Since the Hubble parameter 
remains almost constant during the recent epoch 
(≲), the recession velocity is related to the 
coordinate distance by rec ≈C , which is the 
Hubble’s law.

The age of the universe or the lookback time 
have been used as a measure of cosmic time scales. 
The age of the universe measured in world time is 
calculated from

 




′


∞

′

′ 


 ′′

 ′
 (109)

while the age measured in proper time of a 
comoving observer (us) is obtained by integrating 
Eq. (52):

 






′




∞

′ 
′
 ′  ′ 




(110)

9) If the flux of the source is measured in the world reference frame, the luminosity distance becomes L  sinC.
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The latter is equivalent to the age of the FRW 
universe. Note that  ≥  (see Fig. 4 for - 
relation). At the present time,    Gyr and 
   Gyr. The lookback time, the time 
measured back from the present to the past, is given 
by     or   .

Figure 9 compares coordinate, luminosity, angular 
size distances (top) and cosmic ages (bottom) as a 
function of redshift in the closed world model with 
Model I parameters of Table 2. Also shown are the 
corresponding distances and age for the flat FRW 
world model that best fits with the WMAP CMB 
data (M   and   ; Spergel et al. 
2007). Distances of both world models agree with 
each other at high redshift (≳), but the flat 
FRW world model underestimates distances to 
nearby galaxies than the closed world model.

5. Inflation
The FRW world model has been criticized 

because of two shortcomings, namely, flatness and 
horizon problems. As shown in Sec. 3, the universe 
with positive energy density is always spatially 
closed. If the present universe is traced back to the 
past, it would become a more curved hypersurface, 
a 3-sphere with smaller curvature radius. Therefore, 
the closed world model proposed in this paper is 
free from the flatness problem. Next, let us consider 
the horizon problem, which is stated as follows. The 
observed CMB temperature fluctuations separated by 
more than a degree are similar to each other over 
the whole sky. In the FRW world model, such an 
angle corresponds to a distance where the causal 
contact was impossible on the last scattering surface. 
The large-scale uniformity of the CMB anisotropy 
suggests that the observed regions must have been in 
causal contact in the past.

The inflation paradigm has offered a reasonable 
solution to the puzzle of the large-scale homogeneity 
of the observable universe by proposing that there 
was a period of rapid expansion of the universe with 
positive acceleration (Guth 1981). According to the 

inflation theory, the inflation takes place due to the 
presence of a scalar field , whose energy density 

and pressure are given by   

 

 , and 

  

 

 , respectively, where   is a 

potential of the scalar field. Here we assume that the 
dot over  is the world-time derivative. From Eq. 
(38), for a universe dominated by the scalar field, 
the condition for the positive expansion acceleration 
is




  (111)

A distance scale of causally connected region (so 
called horizon size) is usually quantified by the 
Hubble radius and the particle horizon size. In the 

Fig. 9. (top) Coordinate (C), luminosity (L ), and 
angular size (A ) distances in the closed world model 
(solid curves; Model I). The coordinate distance to the 
big-bang is C∞   Gpc. (bottom) Cosmic ages 
measured in world time (; top curve) and in proper time 
of a comoving observer (; bottom curve). The dashed 
curves are the corresponding distances and age for the 
flat FRW world model that best fits with the WMAP 
CMB data (M   and   ; Spergel et al. 
2007).
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FRW world model, one important implication of 
the positive expansion acceleration is that the 
comoving Hubble radius decreases with time, i.e., 
  . The comoving Hubble radius is 
defined as the comoving distance at which the 
recession velocity as defined in the world reference 
frame is equal to the speed of light (H  ):

H  







  


 (112)

The comoving particle horizon size is the comoving 
distance a photon has travelled during the age of the 
universe:

P   






  


′ 


∞

 ′     ′ 

′
 (113)

The proper Hubble radius and particle horizon size 
are given by H  H    and 
P  P , respectively.

Figure 10 compares proper (top) and comoving 
(bottom) horizon sizes as a function of world time. 
It is important to note that comoving horizon sizes 
were zeros at the beginning of the universe, and 
then have increased until the recent epoch. As 
shown in Sec. 4(b), the universe was expanding 
with the limiting speed and zero acceleration at the 
initial time (Figs. 5 and 6). Therefore, the positive 
expansion acceleration or the decrease in the 
comoving Hubble radius is not allowed at the early 
stage of the closed universe. The decrease is only 
possible in later Λ-dominated universe (≳ Gyr; 
Fig. 10, bottom).

Actually, the scalar field  is not essential for 
driving the rapid expansion of the universe. Even if 
the scalar field is dominant, the condition (111) is 
not satisfied. We can only expect that 


   

from the constraint of zero acceleration, obtaining an 
equation of state

  


 (114)

Thus the curvature radius increases as ∝ in the 
universe dominated by the scalar field. Further 

constraining the universe to expand with the limiting 
speed demands that the energy density of the scalar 
field should be infinite, as in the extreme case of 
H-universe [Sec. 4(b)]. However, the radiation- 
universe with finite total energy provides a far 
simpler expansion history ≃ for  ≪ R [Eq. 
(56)], which demonstrates the sufficiency of the 
radiation in driving the rapid expansion and the 
needlessness of the scalar field. In conclusion, it is 
improbable that the inflation with positive acceleration 
occurred in the early universe.

If the universe expands with the limiting speed, 
the peculiar velocity of a particle vanishes as 
implied by Eq. (34): the matter and radiation were 
frozen with zero propagation speed at the earliest 
epoch. Besides, information at one region could not 
be easily transferred to other regions due to the 

Fig. 10. Time-variation of proper (top) and comoving 
(bottom) horizon sizes in the closed universe (Model I), 
namely, the Hubble radius (H , H ) and the particle 
horizon size (P , P ). For comparison, the evolution of 
curvature radius  is shown as dashed curve in the 
top panel. The proper Hubble radius has an asymptotic 
maximum H ∞  Λ   Mpc. The comoving 
horizon size is shown in unit of degree, with an 
asymptotic maximum P ∞  °. The vertical dotted 
lines indicate the present epoch.
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small horizon size. Thus, physical information 
sharing through the causal contact during the 
expansion of the universe is not an efficient way to 
explain for the large-scale homogeneity of the 
universe. The spherically symmetric and uniform 
distribution of supernova remnants (e.g., Tycho’s 
supernova 1572; Warren et al. 2005) driven by a 
strong shock into the ambient interstellar medium 
shows that the large-scale homogeneity can be 
generated from the ballistic explosion at the single 
point, without the causal contact during the 
expansion. At the beginning of the universe, 
everything was on the single point so that every 
information such as temperature and energy density 
could be shared in full and uniform contact. 
Therefore, if the initial condition was properly set at 
the creation of the universe, e.g., by the quantum 
processes at ≲P (Planck time), which is out of the 
scope of the classical physics, the observed 
uniformity of density distributions at super-horizon 
scales may be explained.

6. Conclusion

In this paper, the general world model for 
homogeneous and isotropic universe has been 
proposed. By introducing the world reference frame 
as a global and fiducial system of reference, we have 
defined the line element so that the effect of cosmic 
expansion on the physical space-time separation can 
be correctly included in the metric. With this 
framework, we have demonstrated theoretically that 
the flat universe is equivalent to the Minkowski 
space-time and that the universe with positive energy 
density is always spatially closed and finite. The open 
universe is unrealistic because it cannot accommodate 
positive energy density. Therefore, in the world of 
ordinary materials, only the spatially closed universe 
is possible to exist.

The naturalness of the finite world with positive 
energy density comes from the Mach’s principle that 
the motion of a mass particle depends on the mass 

distribution of the entire world. The principle is 
consistent only with the finite world because the 
dynamics of a reference frame cannot be defined in 
the infinite, empty world. The closed world model 
satisfies the Mach’s principle and supports Einstein’s 
perspective on the physical universe.

We have reconstructed evolution histories of the 
closed world models that are consistent with the 
recent astronomical observations, based on the nearly 
flat FRW world models (Model I and II; Sec. 4). The 
present curvature radius of the universe is    
Gpc (   Gpc) for Model I (Model II). The 
expansion histories of both models imply that the 
closed universe dominated by dark energy expands 
eternally. However, the currently favored flat FRW 
world exists only as a limiting case of the closed 
universe with infinite curvature radius that is 
expanding with the maximum speed (  ,   ).

From the local nature of the FRW metric (Sec. 2) 
and of the proper time of a comoving observer [Sec. 
4(e)], it is clear that the FRW world model describes 
the local universe as observed by the comoving 
observer. Since the Newton’s gravitation law can be 
derived from the Einstein’s field equations in the weak 
field and the small velocity limits, the gravitational 
action at a distance usually holds at a local region of 
space on scales far smaller than the Hubble horizon 
size (e.g., Peebles 1980). The proper Hubble radius 
H (Fig. 10, top) may provide a reasonable estimate 
of the characteristic distance scale where the Newton’s 
gravity applies. The cosmic structures simulated by 
the Newton’s gravity-based -body method will 
significantly deviate from the real structures on scales 
comparable to H. The variation of the comoving 
Hubble radius H  H also implies that in the past 
(future) the Newtonian dynamics was (will be) 
applicable on smaller region of space compared to the 
size of the universe (Fig. 10, bottom).

In this paper, the history of the universe has been 
tentatively reconstructed based on cosmological 
parameters of non-flat FRW world models. The more 
general cosmological perturbation theory and parameter 
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estimation are essential for accurate reconstruction of

the cosmic history.
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