• Title/Summary/Keyword: Convergence Learning

Search Result 3,682, Processing Time 0.031 seconds

Robust Iterative Learning Control Alorithm

  • Kim, Yong-Tae;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.71-77
    • /
    • 1995
  • In this paper are proposed robust iterative learning control(ILC) algorithms for both linear continuous time-invariant system and linear discrete-time system. In contrast to conventional methods, the proposed learning algorithms are constructed based on both time domain performance and iteration-domain performance. The convergence of the proposed learning algorithms is proved. Also, it is shown that the proposed method has robustness in the presence of external disturbances and the convergence accuracy can be improved. A numerical external disturbances and the convergence accuracy can be improved. A numerical example is provided to show the effectiveness of the proposed algorithm.

  • PDF

A study on time-varying control of learning parameters in neural networks (신경망 학습 변수의 시변 제어에 관한 연구)

  • 박종철;원상철;최한고
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

Face Recognition using Correlation Filters and Support Vector Machine in Machine Learning Approach

  • Long, Hoang;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.528-537
    • /
    • 2021
  • Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.

Application of Deep Recurrent Q Network with Dueling Architecture for Optimal Sepsis Treatment Policy

  • Do, Thanh-Cong;Yang, Hyung Jeong;Ho, Ngoc-Huynh
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.48-54
    • /
    • 2021
  • Sepsis is one of the leading causes of mortality globally, and it costs billions of dollars annually. However, treating septic patients is currently highly challenging, and more research is needed into a general treatment method for sepsis. Therefore, in this work, we propose a reinforcement learning method for learning the optimal treatment strategies for septic patients. We model the patient physiological time series data as the input for a deep recurrent Q-network that learns reliable treatment policies. We evaluate our model using an off-policy evaluation method, and the experimental results indicate that it outperforms the physicians' policy, reducing patient mortality up to 3.04%. Thus, our model can be used as a tool to reduce patient mortality by supporting clinicians in making dynamic decisions.

Link Stability aware Reinforcement Learning based Network Path Planning

  • Quach, Hong-Nam;Jo, Hyeonjun;Yeom, Sungwoong;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.82-90
    • /
    • 2022
  • Along with the growing popularity of 5G technology, providing flexible and personalized network services suitable for requirements of customers has also become a lucrative venture and business key for network service providers. Therefore, dynamic network provisioning is needed to help network service providers. Moreover, increasing user demand for network services meets specific requirements of users, including location, usage duration, and QoS. In this paper, a routing algorithm, which makes routing decisions using Reinforcement Learning (RL) based on the information about link stability, is proposed and called Link Stability aware Reinforcement Learning (LSRL) routing. To evaluate this algorithm, several mininet-based experiments with various network settings were conducted. As a result, it was observed that the proposed method accepts more requests through the evaluation than the past link annotated shorted path algorithm and it was demonstrated that the proposed approach is an appealing solution for dynamic network provisioning routing.

Q-Learning based Collision Avoidance for 802.11 Stations with Maximum Requirements

  • Chang Kyu Lee;Dong Hyun Lee;Junseok Kim;Xiaoying Lei;Seung Hyong Rhee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.1035-1048
    • /
    • 2023
  • The IEEE 802.11 WLAN adopts a random backoff algorithm for its collision avoidance mechanism, and it is well known that the contention-based algorithm may suffer from performance degradation especially in congested networks. In this paper, we design an efficient backoff algorithm that utilizes a reinforcement learning method to determine optimal values of backoffs. The mobile nodes share a common contention window (CW) in our scheme, and using a Q-learning algorithm, they can avoid collisions by finding and implicitly reserving their optimal time slot(s). In addition, we introduce Frame Size Control (FSC) algorithm to minimize the possible degradation of aggregate throughput when the number of nodes exceeds the CW size. Our simulation shows that the proposed backoff algorithm with FSC method outperforms the 802.11 protocol regardless of the traffic conditions, and an analytical modeling proves that our mechanism has a unique operating point that is fair and stable.

A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics (실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.201-206
    • /
    • 2018
  • Recently, as technologies for realizing artificial intelligence have become more common, machine learning is widely used. Machine learning provides insight into collecting large amounts of data, batch processing, and taking final action, but the effects of the work are not immediately integrated into the learning process. In this paper proposed an adaptive learning model to improve the performance of real-time stream analysis as a big business issue. Adaptive learning generates the ensemble by adapting to the complexity of the data set, and the algorithm uses the data needed to determine the optimal data point to sample. In an experiment for six standard data sets, the adaptive learning model outperformed the simple machine learning model for classification at the learning time and accuracy. In particular, the support vector machine showed excellent performance at the end of all ensembles. Adaptive learning is expected to be applicable to a wide range of problems that need to be adaptively updated in the inference of changes in various parameters over time.

A Stduy on Learning Model for Effective Coding Education (효과적인 코딩교육을 위한 학습 모델에 대한 연구)

  • Kim, Si-Jung;Cho, Do-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • With our society entering the Fourth Industrial Revolution, there has been heightened interest in coding education, which has led to an increased number of coding classes offered in schools. Once catered to degree holders only, coding courses are now being offered as liberal arts courses to even non-majors. As the importance of computing abilities and creativity-oriented education through software learning becomes increasingly pronounced, the need for research on effective coding learning is growing more urgent. The present study sought an effective coding education model that would encourage and enhance learners' participation and interest in coding. The proposed learning model is designed to invoke learner's recognition of various coding grammars and data search in the process of designing and performing their own unique project. Application of the proposed learning model and analysis of such case studies showed improvement in learning outcomes. One can expect improved performance among learners if the proposed learning model is applied to various coding courses.

Prediction of Depression from Machine Learning Data (머신러닝 데이터의 우울증에 대한 예측)

  • Jeong Hee KIM;Kyung-A KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2023
  • The primary objective of this research is to utilize machine learning models to analyze factors tailored to each dataset for predicting mental health conditions. The study aims to develop appropriate models based on specific datasets, with the goal of accurately predicting mental health states through the analysis of distinct factors present in each dataset. This approach seeks to design more effective strategies for the prevention and intervention of depression, enhancing the quality of mental health services by providing personalized services tailored to individual circumstances. Overall, the research endeavors to advance the development of personalized mental health prediction models through data-driven factor analysis, contributing to the improvement of mental health services on an individualized basis.

ON LEARNING OF CNAC FOR MANIPULATOR CONTROL

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.653-662
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d.o.f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process. A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF