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ABSTRACT
Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an

adaptive control function generator. CMAC computes control functions referring
to a distributed memory table storing functional values rather than by solving
equatioins analytically or numerically. CMAC has a unique mapping structure as
a coarse coding and supervisory delta-rule learning property.

In this paper, learning aspects and a convergence of the CMAC
investigated. The efficient training algorithms were developed to overcome the
limitations caused by the conventional maximum error correction tralining and to
eliminate the accumulated learning error caused by a sequential node training.

A nonlinear function generator and a motion generator for a two d.o.f.
manipulator were simulated. The efficiency of the various learning algorithms
was demonstrated through the cpu time used and the convergence of the rms and
maximum errors accumulated during a learning process. A generalization property
and a learning effect due to the various gains were simulated. A uniform
quantizing method was applied to cope with various ranges of input variables

were

efficiently.

1. INTRODUCTION

On  close examination of the simple or
complex manipulating behavior such as those
performed by biological organisms, the
computational methods involved in engineering
manipulator control problems have serious
shortcomings. They fail to produce a truly

sophisticated and adaptive motor behavior., The
degree of diffculty experienced in obtaining

mathematical solutions even for trivial
actions performed by ordinary organisms is
very high., However, it is almost certain that

the biological organisms do not solve or model
the complex mathematical formulation for such

complicated motor behavior. Instead, it seenms
that biological organisms use some form of
memory driven control system. Hence, many

researchers have investigated the structural
and functional properties of the brain.
Because of the general drawback to adaptive
controliers for complicated robotic systems
which require the computation of real time
parameter identification based on some
performance criteria and management of
sensitivity on sensory inputs, the robust
adaptive controller based on the biological
structure and function have drawn a great
attention recently. In the hope of achieving
human-like highly adaptive and sophisticated
manipulating behavior with perception of image

and speech, a lot of researchers. are involved
in functional and structural modeling of
information processing of the human brain.
Artificial neural net models have been studied
by scientists in various fields for many
vears. How to achieve a great degree of the
robustness, adaptation, and easy learning is

653

the major focus on this area which also
requires high computation rates.

Anatomical and neurophisical studies of the
cerebellum have led to a theory concerning the
functional operations of the cerebellum. Some
basic principles of how the cerebellun
accomplishes motor behavior have been
organized into a mathematical model,
Cerebellar Model Articulation or Arithmatlic
Controller(CMAC) by Albus[1,2,3]. The CMAC is
a schematical approximate modeling of the
information processing characteristics of the
cerebellum., Through a series of storages or
learnings the CMAC works as a computational
module generating weights in a distributed
table look-up manner connected in parallel.

The CMAC has been applied to several control
applications and revealed its usefulness at
various levels in control problems. Albus{1,5]
implemented CMAC module to control a seven
degree of freedom master-slave arm, The CMAC
was used in a closed loop control system to
make the slave arm follow a specific
trajectory. The trajectory was trained by the
feedback from the movement of the master arm.

The CMAC module was used to control a two
degree of freedom biped walking device by
Camanal6],

Three degree of freedom planar manipulator
was trained to follow a trajectory to avoid
collisions under a fixed static obstacle by
Rajadhyaksha[7]. Reference trajectories were
generated manully using a stylus and trained
iteratively.

An adaptive hierarchical wmodel for two
dimensional computer vision was simulated
using the CMAC by Manglevdakar{8]. Three



segmnentation
image formed

hierarchical levels based on the
were implemented to analyze the
from a digitizer tablet.

Miller{9] applied the CMAC to position the
manipulator with visual feedback by training
on-line observations of the input-output
relationship of the system being controlled.
Learning parameters were chosen on an ad hoc
basis. The CMAC based control of a two degree
of freedom articulated robot arm was performed
for the simulated repetitive and non-
repetitive movements by Miller et.all10}. The
control activity of the CMAC in conjunction
with a fixed-gain linear {feedback controller
was tested, A simulated learning of a
manipulator was performed every one cycle of
trajectory trace using on-line information
baced on the Albus’'s maximum error correction
trainingf3].

Although the CMAC was applied to various
applications as a control substitute or a
reference input gener.tor, a detailed analysis
of the (MAC mapping and network with a
learning capability was not performed yet. The
convergence of the CMAC was anticipated from
the experimental simulation.

The CMAC has a simple structured processing
nature of generating output in response to any
continuous or discrete state input. it
requitres, however, a design guide to specify
control parameters and an efficient learning
algorithm as a controller for unmodeled or
modeled systems. To provide a design guide
a through investigation on the convergence
trend of learning and related controel
parameters should be done bhecause of their
nonlinear effects on trained results,

In this paper, we present the extended
view on the CMAC such as mapping structure,
learning process, mewmory requirements, and
cunvergence and continuity (generalization)
property, which has not been proved formally
vet[3,10].

Three types of basic learning rules such as
a batch type accumulated sequential error
learning, ovn-line type direct sequential error
learning, and a “learning based on the
uniformly distributed randomn errors were
investigated in comparison with the

conventional maximum error learning. A uniform
quantizing method was applied to cope with the
various ranges of Iinput variables. Simulation

results of a nonlinear function generator and
a delta Jjoint motion generator for a two
d.o.f. manipulator were analyzed under the
various training rules.
2. EXTENDED VIEW ON THE CMAC

This section briefly explains about the
structure and function of the computational

CMAC module, and presents the extended view on

the CMAC. The CMAC accepts a continuous or
discrete state input vector by converting a
precise input into many discrete fuzzy inputs

and produces an output vector by summing the

distributed responses, called weights. From a
functional point ¢ view, learning can be
stated as a sequential storage of the
difference between the desired and the CMAC
generated approximated discrete system
responses in a distribute manner by forcing

those differences to be near zero.
the CMAC can be applied to

In fact,
any system which
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has input-output relations such as P H(S) .

The CMAC maps the continuous or discrete
input states into the structured discrete
pattern vectors determined from the resolution
and the number of quantizing blocks of each
input variable and generates the approximated
discrete responses. The hyperstructure of the
combined quantizing block and the resolulion
of each input variable affects the memory size
required and reveals two opposite features,
the generalization and the interference,

In the case of non-fixed (real) node
state vectors, the CMAC can not maintain
unique input and output relation. However, the
CMAC waps or discretizes successfully an
infinite number of input states. An iterabive
learning scheme of the CMAC can be thought as
a powerful substitute of LMS{Least Mean
Square) error procedure,

In a word, main characteristics of the CMAC
is placed on its structured mapping which
decomposes continuous or discrete vauled input
state vectors into a set of linear independent
binary valued 1Iinput pattern vectors. Other
processes beyond this conversion is the same
as those of a linear associator model of the
neural net except a slightly different
learning scheme, With a little modification by
introducing non-linear activation function,
the CMAC can be applied to a case of the
continuous valued inputs and the discrete
binary cutput pattern vectors.

The CMAC is composed of two main mappings in
addressing the corresponding response menories
for a given input.

input
the

S -+ A and A — P,
where S = sensory or command {input state
vector
A = association or address vector
P = response vector
The first mapping determines the active
address vector for storing and retrieving
trained results from any given input and the
second generates the corresponding response,
which is the arithmetic sum of the values

stored in the active address vector. S -- A is
broken down into two sub-mappings such as § -+
M and M — A, where M 1is an intermediate
vector. Each input vector S composed of N
variables which can be continuous or discrete,

A range of each S; is seperated by Ki, the
quantizing block, resulting in quantizing
functions, 1Qi,1Qz2, -+, Qxi, where i and X
represent the input variable i and the Kth
quantized layer of variable i. The quantized
block is one bounded to assure the equivalent

quantization.
each layer are
between the

Since the quantized blocks
indexed and offset
adjacent layers, the number of
quantizing layers of variable i is equivalent
to Ki. The interval of S;i is usually converted
to one unit. Since the resolution of S;i stated
by Albus may lead to the restriction of the
input state vectors, the interval of Si was
used instead. In faet, the resolution of the
input state vector 1is determined from the
offset of quantized blocks. Input stute
variables are usually continuous but sometimes
discrete with the resolution determined from
the characteristics of the system components
or discrete sampling time.

A set Mi is composed of
Each 1Q; has INT(Sgri/Ki)+1

of
by one unit

1Qy, 102, - -+, Qg
or INT(Sri/Ki)+2



number of the quantized blocks, where Sri is a
range of input variable i. For given S;i a set
of elements M*; is composed of the quantized

blocks selected from each iQj, where j = 1, -,
Ki. For wvariable i, the total number of
quantized blocks, iN7T and the number of
quantized blocks in layer j, iNj, can be
obtained such that

‘Nt = Sgi + K

iNj = INT(Sgi /7 Ki ) + 1 for j=i,----,Ki

K
If iNt is greater than Y !N, one is added

j=1
from the first layer to the next until they

are equal. JA|, the number of elements in
association wvector A, concatenated from N
input variables can be obtained such that

K

1A = Z 1QJ“2QJ‘-"'KQJ,

j=1
where {A| denotes the required number of the
CMAC system memory. The CMAC reduces the
infinite memory required for the continuous
control function to }Al number of memories by
discretizing the control function while
maintaining a certain accuracy. A set of

concatenated block of M*; for a corresponding
layer of every input variable produces the
association vector, A*(address decoder), which
denotes a distributed memory address where
trained results are stored or retrieved,.

As the result of the structured mapping of
S — A, the data storage at any point alters
the values stored at neighboring points. The

size and shape of a neighborhood obviously
depend on a quantizing interval Ki and the
offset of 1input wvariables. The hypercube

generated by the input variable offsets should
be scaled to equal to the precision required
for each variable. Thus a unit step along any
input variable axis will always be within the
desired precision. Although this required
precision should be set by the designer
considering the resolution of the control
system components, the affordable systen
menory and desired accuracy of system response
should be considered as mentioned earlier.

Since for most CMAC control applications it
is hard to determine the sensitivity of the
resolution of each input variable to a systenm
response because of the combined effect with
Ki, input variable ranges, and the
characteristics of the control function, a
uniform scheme for the CMAC quantization has
been devised as following.

Based on the estimated precision for each
input the range of each input variable is
scaled and modified by extending or
contracting its range to achieve a unit step
interval. In the CMAC, every input variable is
actually considered to be nondimensional and
the only factors to be considered for a

structured mapping are the mapped CMAC input

ranges, variable offset, and quantizing
intervals. After selecting the maximum range
of all input variables, other input variable

rangec are set to the number of unit steps of
the selected maximum range. This procedure
allows various offsets of input variables and
the uniform mapping through the use of a
common quantizing interval such that X = Ki

this scheme eliminates the restrictions of the
magnitude of a quantizing interval caused by
relatively small input range allowing the
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efficient mapping for the data storage and
improves the CMAC system response because of
the offset adaptive to input variable range.
However, it should be noted that the scaled
offset should be above the resolution of the
control system component.

For a given fixed node input, ‘the
conventional maximum error correction{(MEC)
training proposed by Albus does the following
data storage process. Initially all sets of
association vector are set to zero. At every
discrete input node a difference bettween the
desired function value and the CMAC genecrated
approximated value is computed. Coumparing it
with the predefined tolerance and choosing an
integer node at which a maximum error occurs,
the CMAC mapping of the input is performed to
generate A*,which is the active set of
association vector. The error is stored at
each element of A* in a distributed manner

such that
[ F(Sm)-CMACa
A= G e e e
fax] i
where G = training gain
Ss = lnput node vector where the
maximum error occurs
F(Sm) = CMAC generated function value
at Sm
|A*] = number of elements in A* which

is equivalent to K

The value G is less than or equal to one and
represents the learning speed, denoting G=1 is
equivalent to one step learning. As the value
of G is smaller, the learning gets slower and
the resulting weight difference has lesser
effect on the neighborhoods defined by K.

Although the MEC training has the inherent
disadvantages of long cpu time, oscillating
behavior, and the inadequacy of bhandling
continuous or variable discrete input state
vectors, it has the greatest learning
performance per each trial of training. With
the fixed input node space, learning on
sampled node input generates a linear
interpolating effect on other untrained nodes.
In section 4, we present a non-oscillating
learning algorithm guaranteed to converge, a
fast converging algorithm with a little
oscillating feature, and an algoritham
non-fixed input nodes to overcome
limitations of the MEC learning.

The CMAC has an inherent
difficulty for functions having
discontinuities. A function having a
discontinuity should be handled by using the
separete CMACs or by taking trained results
apart in the CMAC input space. A function for
the CMAC to be trained should be smooth enough
to get a good performance. More careful
attention on the control parameters should be
made for functions varying sharply because of

for
the

training

the inherent correlative effects of the two
opposite properties of the CMAC,
generalization and interference. A property
of generalization or continuity is simply
explained as similar inputs produce similar

responses because of the overiapping nature of

the CMAC structured mapping. Learning
interference occurs when the property of
generalization is not desirable such that
quite different responses are required for
similar inputs. Although Albus stated the
learning interference can be overcome by the



repeated iterations of data storages on
similar inputs, this <c¢an not be achieved
successfully because of the linear

characteristics of

it

learning procedure because
uses a unity linear activation function,

3. CONVERGENCE, GENERALIZATION AND LIMITATION
Consider a coarse coding, which divides the
space into large overlapping uniform sizes of
zones and assigns a unit to each zone. The
key fact in a coarse coding is how accurately
an input feature is encoded. The  CMAC
structured mapping is a kind of coarse coding
but has a unique coding characteristics. As
mentioned earlier, the CMAC mapping schene
decomposes input state vectors into a set of
linear independent binary pattern vectors
whose values of elements are one for the
active elements and zero for the inactive
elements,

The number of generated binary pattern
vectors for the input space state is same as
the number of the CMAC fixed node inputs
determined by the offset of input variables
and is regardless of K. K defines the number
of active units and the total number of binary

input elements m, used for mapping. Given
input space with an offset specified, the
total number of decoded binary elements is
decreased as K increases. The feasible number
of different input pattern vectors is the
number of combination K from m. From these n
number of linear independent binary pattern

Every
weight
and the value of an output unit is determined
from the linear sum of each weighed input
binary values.

Once binary pattern vectors are formed,
network of the CMAC resembles exactly a
associator with a delta learning rule as shown
in fig. 1. Since the mapped input binary
pattern vectors are linear independent each
other, the CMAC satisfies the requirements of
the delta rule learning. The CMAC weight
connection can be expressed in a matrix form
as a system of linear equations such that

vectors are formed by the CMAC mapping.
binary element is connected to its own

the
linear

[ Xpt Xpz Xpm 1 [W1 W2 ... We 1T = Tp
where p indicates the various input patterns
and is indexed as 1,2,...,n. The weight matrix
can be obtained as W = ¥* T and %* is a

CMAC
STRUCIURED
MAPPING

Xy (11108
X, (1911849)
Xy= [1eB11Q]
xg= (B0B111)

INPUT
| EV T O |
1 61 [
L a1T] ¢/
EREIEN
4,5,6)
{1,4,5)
(1,3,4)
{1,2,3) ginary PATTERN
VECTOR

Fig. 1 The CMAC network
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pseudo-inverse, As far as the system input and
output has one to one corresponding relation,
¥ is unique. If not, W 1is a least square
solution to the system of minimum norm. An
easy way to compute ¥ specially for a large
system is to use an iterative error correcting
storage procedure called LMS(least Mean
Square) learning procedure.

Since every decomposed binary input pattern
vector is not orthogonal, with a given network
and a given set of associations, it is desired
to produce a set of weights that minimizes
some sensible measure of errors. The error
surface is formed from the error measure as a
height in weight space whose dimension is
composed of each weight in a network. The
shape of the error surface is critical in the
speed of learning. For a network with linear
output elements, the error surface forms a
bowl shape. Since the bowl has only one global
minimum, a steepest descent on the error
surface is guaranteed to find it. If the
derivative of the error surface is
proportional to the weight change by the delta
learning rule, this corresponds to performing
steepest descent on the error surface.

The convergence of the CMAC can be proven
similary as a case of multi-layer LMS learning
network[11]. The CMAC can be thought as one
layer network being connected the input and
output directly. Since with a linear
activation function muti-layer LMS network can
be converted to one layer network, the number
of processing layers 1is not really matter
while an activation function is kept
linear[12]. If there is a fixed finite set of
input-ocutput cases, the error measure for a
specific input-ocutput case is

Ep = 1/2 (Tp - Yp)2
p = Index over input-output
pairs
Tp= desired output
Yp= CMAC generated ocutput
The overall error is then,
n
E = Z Ep
p=1
For a specific case,
yi = xi for i=1,2,..,m

m
X =2 Wiy
i=t

Since the CMAC has a
identical to the total

linear output which is
input,

Y = X
The partial derivative of Ep with respect to
each weight is obtained from the chain rule,
8Ep _ 8Ep dY X
awi aY dX aWi
= —-(T-Y) vi
= - 9% vyi
From the requirement of steepest descent,
aEp
A Wi oc - ——
Wi
=4 8 vyi : Delta Rule
After one complete sweep of all pattern
presentations,
oE n
Wi pgxap el
This 1is strictly true for a batch type

sequential error correction(SEC) learning such
that the values of the weights are not chaneged



during the epoch of whole pattern
presentations. All input states are presented
sequentially and an error for each pattern is
multiplied by learning gain and accumulated.
The accumulated errors are fed back to each
weight at every epoch, It is guaranteed to
move in the direction of the steepest descent.
The learning gain should be small enough for a
system to converge because of the accumulated
effects,

For on-line type SEC
the weights after each
the process is apart to some extent from a
true gradient descent in E. This may sometimes
force the oscillating of E to occur but by
making learning gain sufficiently small, the
steepest descent is approximated arbitrarily
closely. With a relatively high gain, although
a little oscillating of E occurs during the
whole sweep, the fast convergence of E per
epoch is obtained, The MEC learning can be
thought as a modified version of the on-line
type SEC learning,

learning by changing
pattern is presented,

This type of +the simple LMS learning
procedure has its limitation to the cases of
similar inputs with different outputs,

Because of the generalization property of the
CMAC, the interference is rather cccurred when
the discontinuity or serjous functional change
occurrs in  the output values within the
neighborhood of generalization, Also steepest

descent will be slow at points in the weight
space where the error surface forms a long
ravine with steep sides and a very low
gradient along the ravine. In this case, the

gradient at most points in the space is almost
perpendicular to the direction towards the
minimum. If the learning gain is large, there
are divergent oscillations across the ravine,
and if it is small the progress along the
ravine is very slow. This effect is shown in
the next section.

The generalization property of the CMAC is
shown in fig.2 using a sinple trigonometric
function, sin(x). The input range was O to 360
degree and the interval of the sampled input
is 5 degree. The CMAC net was trained with 73
sampled input-output pairs and the trained net
was used to obtain the response at every one

degree over the whole input space. Resulting
errors were compared with linear interpolated
values of the results of trained sample nodes,
From this we can see the CMAC trained net
automatically generates the linear
interpolating behavior, The on-line SEC
learning was executed for 300 epochs., The

convergence of the rms and maximum error over

the sampled and the total input nodes is shown
in fig.3 with respect to the number of
learning epochs.

In pratice, same as other neural networks

the most serious problem of the CMAC is the
speed of convergence. How long and how much
memory it might take a system to learn is the
main concern. In the next section, three basic
tearning algorithms are presented and the
perfornance of these are compared with the MEC
learning. Learning features which are
application dependent are also defined.

4. Training Algorithnms
Training algorithms can be classified into a
sequential error correction(SEC) and a randonm
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with respect to the trained epochs.

error correction(REC) according to the
selection of the input nodes to be trained,
Choosing one of the two is application
dependent. In general, the SEC learning

requires error measures over all sets of input
and output pairs for one learning epoch. Since
the computing overhead required for obtaining
errors over the input space is very heavy when
a systenm function to be trained is
computationally complex, the SEC learning is
proper to the application whose errors are
measured and kept on—-line. This is especially
true for a function evaluated by the numerical
iteration and for a large number of input-
output pairs.

In the previous section, the convergence of
the CMAC was proven with the batch and on-line
type SEC learning. Here, three basic learning
and the MEC learning algorithms were executed
using various learning gains for P=sin(x)
with the range of 0<x<360(deg) and X=30 for
the equivalent cpu learning time. Sampled
input patterns were selected at every 5 degree
interval resulting 73 sampled input nodes. The
resulting performance of the rms and maximum
errors are obtained over sampled input nodes
and compared each other,

The batch type SEC learning guarantees the



convergence of the accumulated ras error
without forcing any oscillation per epoch once
the learning gain is properly selected. Since
training is done only once per epoch with the

accumulated errors, it converges relatively
slow compared to the on-line type SEC
learning. Trained results of the CMAC batch
type SEC learning are shown in fig.4. At
G=0.34 the system diverges and it does not
learn.

At the first epoch, the training performance
is checked searching the best gain to avoid
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1.008+00

3.188-01

1.008~01

3.18x-03

1.008-03

R.M.3. FRROR

3.185-03

1.008-08

3. 10K-04

1.00x~04 T T Y T
[} a0
NO. OF TRANING ( X 6 }
a‘rms error
X=30

1.008+00

3 188-0t

L

1.008-01

3.168~03

1.005-02

MAX. XRROR

3.185-0%

1.0058-03

L1485~ 04 T T T T
% yo. or yRuNING (X 8 ) ° “0
b:maximum error
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SEC learning for P=sin(X)
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the divergence. In practice, this process is
good enough to guarantee the system
convergence., Initially the high and low end
gains exhibit rather a slow converging
behavior because of the interference and
generalization properties respectively,
However, as far as the system convergence is
preserved, the large gain has the Dbest
performance after all. Trained results with
K=40 in fig.5 show the diverging and

converging effects wmentioned in the previous

section clearly,

In a case of on-line type SEC learning the
connected weights are changed at each pattern
presentation. Although the performance measure
of the accumulated rms error oscillates at
each pair presentation, it converges fast with
little oscillation at every epoch., The trend
of learning results are similar to that of the
batch type SEC learning except the diverging
behavior as shown in fig.6,
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1.005+00

3.168-01 o
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Fig.6 On-line type SEC learning for P=sin(XJ
with k=30 (atrms error b:maximum error).

The MEC learning proposed by Albus can be
thought as a modified version of the on-line
sequential type LMS learning. Although the
correction effect of an individual pattern
presentation is the greatest of all, it
requires almost the same computational load
because of the searching effect for the
maximum error node over all input nodes
presented. The learning progress is quite slow
and resulting system performance 1is poor
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compared to the SEC learning because learning
is actually done once per epoch. Furthermore,
the MEC learning can not avoid the oscillating
features as the number of training increases.
The trend of learning is shown in fig.7. As
the learning gain increases, it learns
relatively faster but oscillation starts
ealier,
Three
have

learning algorithms mentioned above
restriction of learning for the fixed
nod: input~output pairs. The REC learning
which is one of quite natural mechanisms is
not restricted to the fixed input nodes but
can be applied to the continuous real input
nodes, Since it does not restrict the input
space nodes, the CMAC mapping acting as an
analog to digital converter intgrates the
trained errors. It can train the nonlinear
behavior among the fixed input nodes.

Two types of generating random inputs can be
considered, One is generating a random
sequence input node from the sampled input
patterns and the other is from the total input
patterns., The input space which is converted
to the binary input pattern space has an
infinite number of state vectors. If the
supervised output is obtained directly from
the input state vectors, the learned error is
integrated. Since the computing overhead is
not significant in this case, the initial
performance of learning is quite good but it
can not avoid the oscillating behavior
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similarly as the MEC learning. However, this
learning is appropriate for a large
input~output pairs and when the desired
function values are not measured on-line., The
advantages of REC learning can be adopted by
the SEC learning in the case of on-line type
learning,

A random number generator was wodified to
allow a uniforms random deviation between 0 and
1 by adding an additional shuffle on the
numbers generated by a VAX 11/750 system~-
supplied routine. is effectively
free of the correlation[13], The
generalizing shown in fig.8 when

This routine
sequential
effect

is
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Fig.8 Error distribution of REC learning for

P=sin(X> (K=30,G=0.8 Offset=1,Sampled
interval=5 deg,number of training=18000)
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a linear
untrained

for the
sampled

interpolating results
input nodes located among
nodes. With proper number of sampled input
node inputs, the CMAC can learn the

desired system behavior arbitrarily closely.
Two types of learning, REC and SEC, were
presented and their learning performances were

compared with the MEC learning. The MEC
learning had the poorest performance of all
because of its learning charateristics. The
SEC learning provided the basic tool to
improve or develop the better tearning
algorithm, The SEC and MEC learning have their
restrictions such that they accept the
prespecified fixed node inputs, The REC
learning, however, overcomes this fact and can

also accept the non-fixed real node inputs. A
uniform quantizing method was devised to cope
with the various ranges of lnput variables and
corresponding resolutions efficiently,

The performance of the proposed learnings
wias quite good enough to implement the memory
driven control systenm according to the
simulation results performed. The required
system memory for distributed trained data
storage was enourmously small compared to
normal table look-up tvpe storage.

The presented results of the CMAC analysis
aon learning will accellerate and extend its
application to robotics field such as motion
planning and control, calibration, sensor
fusion including vision, and obstacle
avcoidance, Application of the hybrid type of

he CMAC plus conventional control and the
hierarchical (MAC network for information
provessing are also recommended,

Since the effects of the control
on the CMAC learning algorithm are
interrelations between these parameters
the shapes of the system function to
trained should be investigated with
learning performance, In the case that the
unknown desired relations between the input
and cutput are to be trained, it is desirable
to set a certain guideline for the application
of the CMAC,

parameters
critical,
and
be
its
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Fig.11 A nonlinear function to be trained

P=sin(x)sin(y) with 0<x<360 0<y<180 (deg).
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using the REC learning performed on the
sampled input nodes by 5 degree. Trends of the

rms and maximum errors are shown in fig.9. It
is seen that as the number of training
increases, the effect of the gain gets
smaller.

The rams performance of all four algorithms
mentioned so far has been compared in fig.10
for the equivalent training period. The SEC
learnings show the very good converging trend
and system performance. The REC learns fast at
the early stage but it has a limitation caused
by the randomly distributed inputs without
considering learned history of the whole input

space.

1.008+00
o K30, GAIN:0.3(B),0.8(S),0.6{i),1.0(R)
rooK =01
10802
13
s 1.008-08
o
. L16E-03
n
: 1.008-03
2100-04 &
1.008-04
Lrr-08 TRAIN ND.' (B.5: X 8, J{: X 8 R X 380
[} 20 o
Fig.10 Performance of various learning

algorithms on the rms errors over the sampled
input nodes(P=sin(xJ),K=30),

5. LEARNING SIMULATIONS
Using the previously mentioned learning
algorithms, a nonlinear function geneartor and
a motion generator for a two d.o.f.
manipulator were simulated. Trained results
were compared using the rms and maximum errors
over the sampled input nodes for the
equivalent learning period. The rms and
maximum errors over the extended Iinput nodes
were also compared to show the generalizing
effect of each learning. The uniform
quantizing scheme mentioned in section 2 was
applied.
5.1 Nonlinear Function Generator

A nonlinear function, P=sin(xJ)sin(y)(fig.11)
was trained with input ranges of 0{x<360 and
0<y<180 using the batch type SEC(G=0.5),
on-line type SEC(G=0.8), MEC(G=0.8), and
REC(G=0.4) learnings. The interval of sampled
input nodes was 15 degrees resulting 325 pairs
of inputs. The offset of the CMAC input space
was 1 degree and K was equal to 30, The
learning gain of the batch type SEC was
selected from the scheme presented in section
4,

The rms and maximum errors were compared
over the sampled input nodes and the extended
input nodes of 3 degree interval and those are
shown in fig.12 and fig.13 respectively. The
SEC and REC learning shows the excellent error
fitting on the sampled input nodes. However,
they show rather poor results on the overall

node space sampled by 3 degree. This reveals
their linear interpolating effect on the
intermediate untrained nodes, which are
connected as nonlinear surface., Maximum and
rms error have almost same trends as the
number of training epoch is increased. The rms
error oscillates in the REC and MEC learnings
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as learning number is increased although it is
not shown clearly in fig.12. The REC learning
shows a rather large oscillating behavior in
paximum error because of its randemly selected
correction without considering the slope of
overall error surface. The MEC learning shows
the worst learned rms error performance and
the oscillating behavior in maximum error even
it corrects the selected node of maximum error
at each epoch.

5.2 Joint Movement of Two D.Q.F, Manipulator

Two d,o.f. planar manipulator was trained to
move from the specified initial arm state to
the target point in the work space by training
the required joint movements directly, The
initial arm configuration was set such that
@1=n/4 and O2=-m/4. Since two different arm
configurations exist for every target point,
the final arm configuration and the entire
Jjoint movements were determined from the
initial Jjoint states and the location of the
target. The CMAC input space is the work space
of the manipulator and was defined by two
input variables using polar variables,
re[300,700] in mm unit and ¢ & [~150,150] in
degree unit. Fig,14 shows configurations of
two seperate desired Jjoint movement and
aspects of discontinuity caused by the
desired arm pattern.

Two seperate sets of the CMAC weights with a
common input space were trained to handle
discontinuity caused by two different target
configurations. Each CMAC set has two sub-CMAC
joint movement controllers resulting in une
CMAC input and two CMAC trained outputs. Four
differnt learnings such as batch SEC(G=0.05)
on-line SEC(G=0.8), MEC{G=0.6), and REC(G=0.6)
were applied for the equivalent training
period, The quantizing value K and the offset
of the CMAC input space were set to be 150 and
1 respectively. The interval of the sampled
input nodes were 20 mm and 20 degrees
resulting in 336 input pairs.

The rms and maximum errors were obtained
from the joint and world space and are shown
in fig.15 and fig.16 respectively. The
oscillating behavior of the rms error occurs
in the BET in the world space at the early
stage although it is not shown clearly in
fig.16. The reason 1is mainly due to the
unmatched relation of converging directions
between the Jjoint space and the world space.
The SEC and REC learnings exhibit the
excellent trained performance while the MEC
shows a poor result as expected. However, if
the input pairs are increased, the required
training opu time will be the problem as
mentioned earlier as a restriction of the SEC
learnings.

6. CONCLUSION
The convergence of the CMAC has been proved

identifying the CMAC network as a kind of
one-layer linear associator having a linear
activation function. Trained results fron
simulating various functions showed the
coincident converging features. The  CMAC

structured mapping has its merit of converting
the continuous or discrete input state vectors
into the linear independent binary pattern
vectors, which 1is required for the delta
learning rule.

The trained CMAC network using the sampled
input pattern vectors automatically generates
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