DOI QR코드

DOI QR Code

Prediction of Depression from Machine Learning Data

머신러닝 데이터의 우울증에 대한 예측

  • Jeong Hee KIM (Bigdata medical convergence, Bio-convergence, Eulji University) ;
  • Kyung-A KIM (Bigdata medical convergence, Bio-convergence, Eulji University)
  • Received : 2023.04.19
  • Accepted : 2023.06.29
  • Published : 2023.06.30

Abstract

The primary objective of this research is to utilize machine learning models to analyze factors tailored to each dataset for predicting mental health conditions. The study aims to develop appropriate models based on specific datasets, with the goal of accurately predicting mental health states through the analysis of distinct factors present in each dataset. This approach seeks to design more effective strategies for the prevention and intervention of depression, enhancing the quality of mental health services by providing personalized services tailored to individual circumstances. Overall, the research endeavors to advance the development of personalized mental health prediction models through data-driven factor analysis, contributing to the improvement of mental health services on an individualized basis.

Keywords

References

  1. Borkowska, A., & Rybakowski, J. K. (2001). Neuropsychological frontal lobe tests indicate that bipolar depressed patients are more impaired than unipolar. Bipolar disorders, 3, 88-94. https://doi.org/10.1034/j.1399-5618.2001.030207.x
  2. Datahunt. (2023, November 10). "F1 Score and Machine Learning - Definition, Principles, Calculation, Limitations, and Mitigation Strategies". Retrieved from https://www.thedatahunt.com/trend-insight/f1-score
  3. Garga, S., Priyaa, A., & Tiggaa, N. P. (Year not provided). Predicting Anxiety, Depression, and Stress in Modern Life using Machine Learning Algorithms.
  4. Kim, S., Kim, M., & Kim, H. (2019). "Impact of social exclusion on depression in rural elderly population". Rural Economy, 2, p106.
  5. Kim, Y., Kim, J., Woo, G., Kim, H., & Park, H. (2020). Machine learning techniques for predicting depression based on lifestyle patterns using NHANES data. Ming Ji University, 0720.
  6. Lim, J. H., & Lim, D. O. (2022). Prediction of depression in the elderly using a Wide & Deep Learning Model. Retrieved from https://e-jhis.org/m/journal/view.php?number=797
  7. Robinson, L. J., & Ferrier, I. N. (2006). Evolution of cognitive impairment in bipolar disorder: a systemic review of cross-sectional evidence. Bipolar disord. 8, 103-116. https://doi.org/10.1111/j.1399-5618.2006.00277.x
  8. Statistics Korea. (2023, November 03). "Results of the 2021 Agricultural, Forestry and Fishery Census". Retrieved from https://kostat.go.kr/board.es?mid=a10301080500&bid=226&act=view&list_no=417699&tag=&nPage=1&ref_bid=
  9. Hedges, L. V. (1982). Estimation of effect size from a series of independent experiments. Psychological Bulletin, 92, 490-499. https://doi.org/10.1037/0033-2909.92.2.490
  10. Simonsen, C., Sundet, K., & Vaskinn, A. (2008). Neurocognitive profile in bipolar I and bipolar.II disorder: differences in pattern and magnitude of dysfunction. Bipolar Disord, 10, 245-255. https://doi.org/10.1111/j.1399-5618.2007.00492.x