References
- Borkowska, A., & Rybakowski, J. K. (2001). Neuropsychological frontal lobe tests indicate that bipolar depressed patients are more impaired than unipolar. Bipolar disorders, 3, 88-94. https://doi.org/10.1034/j.1399-5618.2001.030207.x
- Datahunt. (2023, November 10). "F1 Score and Machine Learning - Definition, Principles, Calculation, Limitations, and Mitigation Strategies". Retrieved from https://www.thedatahunt.com/trend-insight/f1-score
- Garga, S., Priyaa, A., & Tiggaa, N. P. (Year not provided). Predicting Anxiety, Depression, and Stress in Modern Life using Machine Learning Algorithms.
- Kim, S., Kim, M., & Kim, H. (2019). "Impact of social exclusion on depression in rural elderly population". Rural Economy, 2, p106.
- Kim, Y., Kim, J., Woo, G., Kim, H., & Park, H. (2020). Machine learning techniques for predicting depression based on lifestyle patterns using NHANES data. Ming Ji University, 0720.
- Lim, J. H., & Lim, D. O. (2022). Prediction of depression in the elderly using a Wide & Deep Learning Model. Retrieved from https://e-jhis.org/m/journal/view.php?number=797
- Robinson, L. J., & Ferrier, I. N. (2006). Evolution of cognitive impairment in bipolar disorder: a systemic review of cross-sectional evidence. Bipolar disord. 8, 103-116. https://doi.org/10.1111/j.1399-5618.2006.00277.x
- Statistics Korea. (2023, November 03). "Results of the 2021 Agricultural, Forestry and Fishery Census". Retrieved from https://kostat.go.kr/board.es?mid=a10301080500&bid=226&act=view&list_no=417699&tag=&nPage=1&ref_bid=
- Hedges, L. V. (1982). Estimation of effect size from a series of independent experiments. Psychological Bulletin, 92, 490-499. https://doi.org/10.1037/0033-2909.92.2.490
- Simonsen, C., Sundet, K., & Vaskinn, A. (2008). Neurocognitive profile in bipolar I and bipolar.II disorder: differences in pattern and magnitude of dysfunction. Bipolar Disord, 10, 245-255. https://doi.org/10.1111/j.1399-5618.2007.00492.x