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Abstract : In this paper are proposed robust iterative learning control(ILC) algorithms for

both linear continuous time-invariant system and linear discrete-time system. In contrast to

conventional methods, the proposed learning algorithms are constructed based on both time-

domain performance and iteration-domain performance. The convergence of the proposed

learning algorithms is proved. Also, it is shown that the proposed method has robustness

in the presence of external disturbances and the convergence accuracy can be improved. A

numerical example is provided to show the effectiveness of the proposed algorithm.

1. Introduction

Ever since Arimoto [1] suggested ILC methodology,
there have been a number of efforts to improve and
apply ILC method. In fact, ILC can be easily ap-
plied to the repetitive tasks that is in many robotic
industrial operations since it requires less a pri-
ori knowledge about the controlled system in the
controller design phase and it has the capability
of modifying an unsatisfactory control input signal
based on the knowledge of previous operations of
the same task [2, 3, 4, 5, 8, 10, 12, 16]. Also, ILC 1s
known to guarantee an eventual uniform tracking
performance as the algorithm repetitively applies.

External disturbances such as state disturbances,
measurement noise and error of initialization are
inevitable in the real control systems. This distur-
bances can have an effect on the ILC system and
make the system diverge by its iterative property.
So, the robustness problem of ILC has been stud-
[11]

have studied the robustness properties of a class

ied by many researchers. Heinzinger et al
of learning control algorithm for the nonlinear sys-
tem. Saab [13, 15] proved the convergence and the
robustness of both P-type learnig control for the
nonlinear time varing system and D-type learning

control for the linear discrete-time system. Bien

and Huh (7] proposed the higher-order [LC method
that utilise more than one past error history con-
tained in the trajectories generated at prior iter-
ations and showed that the higher-order ILC can
improve the convergence performance and the ro-
bustness to the disturbances by using the multiple
past-history data pairs at the expense of additional
storage. However, this ILC method can be applied
to the dynamic system that has the direct linkage
between the input and the output and there may
arise some difficulty in finding the suitable weight-
ing matrices satisfying the convergence conditions,
especially when the number of past-history data
pairs is large (7, 14].

In this paper,
rithms based on both time-domain performance

we propose new ILC algo-

and iteration-domain performance for both linear
continuous time-invariant dynamic system and lin-
ear discrete-time dynamic system. The control law
based on the iteration-domain performance can im-
prove the robustness to the disturbances by using
the past-history data pair like higher-order ILC al-
gorithm [7]. The convergence of the proposed algo-
rithms is proved and a numerical example is given
to show that the proposed method has robustness

in the presence of the external disturbances and



the convergence property according to parameters
change is presented.

In the sequel, the following notational convention
is adopted : k is the iteration number; 2(¢), z(7)
are state vectors, u(t), u(i) are control input vec-
tors and y(t), y(i) are output vectors for contin-
uous and discrete-time systems respectively; I, is
r x r identity matrix; |z} denotes the Euclidian
norm of a vector z; || A|| denotes the induced matrix
norm of a matrix A; ||f(t)|| denotes (F(t)T f(t))%
for a time function f : [0,7] — R"™ and ||f(t)||co
denotes supepo,7) |l f(¢)|l; and the following norms
are definded:

Definition 1 We define the A, norm for a time
function f:[0,T] — R®

fOllxe = sup e[| F()]I,
te(0,T]

where A > 0.

Definition 2 We define the Ay norm for a time
function g : [0, N] — R"

HgCllxe = sup a™*|g(d)]],
1€[0,N]

where A>03fa>1,and A<0ifa< 1.

Remark 1 From above definitions, it is obvious
that [|flx. < [fllee < TIflla. and [Iffln, <
[fllo < €*T|ifllrne, implying that the defined X,
Ag¢ norm and ||-||e norm are equivalent [17]. There-
fore, the convergence can be proved employing the

defined A, norm and A\g norm.
2. ILC for linear continuous time-invariant

dynamic system

In this section, we present a ILC algorithm for lin-
ear continuous time-invariant dynamic systems.
Consider the linear time-invariant dynamical

systemn described by
z(t)
y(2)

where £ € R"*,u € R" and y € R" denote the state

Az(t) + Bu(t) (1)
Cz(t)

vector, input vector and output vector respectively.
A, B and C are constant matrices with appropriate
dimensions and it is assumed that C'B is nonsingu-

lar.

Let z4 be the desired state trajectory which

is continuously differentiable on [0,7], and,
W.L.O.G, assume that
.’Ed(O) =0. (2)

Then we consider an ILC algorithm based
on both time-domain performance and iteration-
domain performance. At first, we consider PD-type
control law in the time domain such as Oh et al
[6], Bien et al. [8] and Hwang et al. [9] as follows :

uk41(£) = wp(t) + T[8gx (8) + Abye(0)]. (3)

Also, we consider PD-type control law in the iter-

ation domain as follows :

up+1(t) = uk(t) + @(6ye (1) — Obyr—1(1))).  (4)

Above iteration-domain control law use the past-
history data pairs like 2nd-order ILC algorithm [7].
We propose a new type of ILC of the form

upr1(t) = we(t) + D[6ye(t) + Abye(t)
+(I>(6yk(t) — @6yk_1(t))], (5)

where
zp(t) = Azk(t)+Buk(t), (6)
yk(t) = ka(t)r
ya(t) = Czal?), (7
bye(t) = wa(t) — yk(t)- (8)
If it is assumed that
Il —~TCBI| <p<1 (9)

and

ye(0) =94(0)=0 £=0,1,2,---, (10)

Arimoto’s control law [1] can make the error be-
tween yi(¢) and y4(t) approache to zero as k — oo.

In this paper, we assume the conditions (9), (10).

Theorem 1 Suppose that we can choose T' such
that (9), (10) holds, and that the learning law (5)
1s repetively applied to (1). Then, for a given de-
sired output yq4(1),0 < t < T, the learning law (5)
quarantees that, for each t € [0, T

Jim v (t) = ya(t). (11)



Proof
Let u*(¢) be a control input such that

t
ya(t) = Cetzg + C/ eAt=T)By* (7)dr.  (12)
0

The proof is completed if one can show
Hmy oo uk (2) = w*(t).
For this, define
A«
bug(t) = u™(t) — ue(t). (13)

Then it follows from (5) and (12) that

u*(t) — u(t) + T[byr(t) + Abyx(t)
+®(6yx (1) — Oy -1(2))]
= u(t) — uk(t) + C[6ue(2)
+(A + ®)byx (1) — POSyk_1(1))]
= (I - TCB)§ux(t)

bups1(t) =

t
——I‘CA/ eA0=") Bouy (r)dr
o}
t
~T(A + <1>)c/ eA0=7) Bsuy (r)dr
0
t
+r<1>@c/ eA0=7) By, _(7)dr
0
= (I -TCB)éux(t) - T(CA+ AC
t
+<I>C)/ eA=") Béuy (r)dr
0
t
+I‘<I>G)C/ eA('_T)Béuk_l(T)dr
0
(14)

Taking the norm || - || on both side of (14), we

have

IN

Iswsri Ol < 1T = TCB|| - [lsu(t)]

H|IT(CA + AC + ®C)||

[ 1A Bl e

+Hreec|

[ 1B e
sl

t
+h0/ =)\ 6ur(7)||dT
Q
t
+h1/ =0\ ug 1 (7)]|dT (15)
0

whete p 2 | =TCB]), ho £ [N(CA+AC+C)||-
2y A
I1Bll, b = [IT@OCY| - || B}, @ = | A} -

By multiplying both side of (15) by e~** and

taking the norm | - ||a.,

ll8uk+1(Dllr.

sup _e”M||8ug 41 (1)]]
te[0,T]

plidur(t)]a.

t
+ho sup /e(a—/\)(t-—-r)
te{0,T]Jo

sup e‘)‘r||6uk(‘r)||dr
0.1]

TE

t
+hy sup /e(“m’\)(’_r)
te[0,T]Jo

sup e‘”[l&uk_l(r)”dr
r€[0,T]

IA

5 1_€(a—Aj)T p
= (ot hor ) Fu (D).

_ e(a—)\)T

1
h
+(h1 Y- a

Méur—1(®)llxr..»
,ford # a.(16)

diffeult to
limg oo [J6uk()lfr, =0, if

Now, it 1is not show that
1— e(a—)\)T A 1-— e(a-)\)T
A—a i A

Noting that the inequality (16) can be represented

lp+ ho l<1. (17)

by a non-negative sequence z¢, k = 1,2, 3, -, with

the property

Ttz < T Thy1 + S Tk,

(18)

where r,s > 0 and the convergence condition
is equivalent to the condition that eigenvalues of
Tr42 = rZpy1 + sz are all in the unit circle in the
complex plane, we can easily show that the above
sequence converges to zero, if 4+ s < 1 holds.

Since 0 < p < 1 by assumption, it is possible to
choose A sufficiently large so that

1— ela=MT 1— e(a—/\")T
p+ho e hy Py <1l (19)

Thus,

lim ||6uk(t)||r. = 0.

k—o0
By definition of || - [|x., this implies

klim ug(t) = u* ().
This completes the proof. |

Theorem 1 shows that the proposed learning al-
gorithm (5) guarantees convergence of the output

n tracking as k increases.



Remark 2 The proposed algorithm (5) looks
more complex than lst-order methods [1, 2, 8, 9,
6, 16].

Justment of both convergence speed and tracking

However, it gives more freedoms for ad-

accuracy. With @ = 0, the proposed method is
much the same as the learning law proposed by Oh
et al. [6], Bien et al. [8] and Lee et al. [16]. Also,
when & = 0 and A = 0, the proposed method is
essentlally the same as the learning law proposed
by Arimoto et al. {1]. Thus, the proposed method
can be considered as a generalization of the previ-
ous works (1, 6, 8, 16]. The convergence conditions
in theorem 1 are similar to the previous works [1, 6,
8, 16] and more simple than the higher-order ILC
method [7].

3. ILC for linear discrete-time dynamic

system

In this section, a robust ILC algorithm for linear
discrete-time dynamic system is proposed.
Consider the linear discrete-time dynamical sys-

tem described by

z(i+ 1)
y(7)

Az (i) + Bu(i)
Cz(i)

(20)

where z € R*,u € R™ and y € R" denote the state
vector, input vector and output vector respectively.
A, B and C are constant matrices with appropriate
dimensions and it is assumed that C'B is nonsingu-
lar.

Then the ILC control law for the system(20) can

be described as follows :

wpp1 (1) = we(d) + T[owe(i + 1) + Adyi(d)
+®(byx (1) — Obyx—1(i))] (21)
where
6yk(i)=yd(i)—~yk(i) t=0,1,---,N. (22)
We assume that
I, =TCBI <p< 1, (23)
and
y(0) =(0) =0 k=0,1,2,.--. (24)

Theorem 2 Supbose that we can choose T such
that (23), (24) holds, and that the learning law (21)
1s repetively applied to (20). Then, for a given de-
sired output yq(i),t = 0,1,---| N, the learning law

(21) quarantees thai, for each i € [0, N]

him yk(l) = yd(i). (25)
k—o0
Proof ‘
Let u*(7) be a control input such that
va(i) = CA'zo+ €Y AI7'Bu"(j).  (26)
j=0
The proof is completed if one can show
limk.*oo uk(i) = u*(i).
For this, define
NA .. .
Sur(2) = u™ (7) — ug (). (27

Then it follows from (21) and (26) that

uw*(3) — ue(?) + Tdye (i + 1) + Ady(7)
+@(6yx (i) — Odyx-1(1))]
= u (i) — ue(d) + Ploye (i + 1)
+(A + ®)oyr () — POy -1(7))]
= (I —TCB)éug(i)

i—1
—TCAY | A7 Bsui(j)
j=0

bup41(i) =

i—-1
~T(A+ ®)C | AT~ Boui(j)
j=0
+TROCTY A~ BSug _1(j)
j=0
= (I —TCB)su(i) —T(CA+ AC
i1
+0C)Y " AT Boui(j)
i=0
i—1 )
+TPOCY A1 Béur_y1(j)

J=0

(28)

(29)

Taking the norm || - || on both side of (29), we

have

Noursr (D)) < M —TCBJ - |jour(i)]]

HIT(C A+ AC + &C)||
SO NATIBINSue ()]

=0

Hireec||



A Bl us ()
j=0

i—1
= pllour(@)ll + ho D " Mour ()

§=0

i-1
+hi Y [la T T lbuk— (DIl (30)
j=0
A a :
where p = ||I =TCBl|, ho = |[T(CA+AC+2C)||-
A A
1Bll, k1 = [IF@OCY - || Bll, @ = || Al
By rnultiplying both side of (30) by a™* and

taking the norm || - ||a,,

16wk +1(D)lx, sup a”||6ura (D]l

Il

i€[0,N]
< pllur(illa, +ho sup aO-bf
i€[0,N]
i—1 _ .
_Za(’\‘l)J sup a_AJH&uk(j)“
im0 j€lo,N]
+hy sup a1
i€[0,N]
i—1 . .
'Za(/\—l)] sup a”M||6ux_1(5)|
j=0 jelo.N]
1—q~(A-ON
< (o ho—sr O leu(Blha,

1 —a" -

+(hy e

Now, we can easily show that limg_, o ||6ur(i)]|a, =
0, if

| — g=(A-1N
[p+h0 a1 _ | ]+[h1

1 —ag-(A-1N

a*-1 -1

<1
(32)
Since 0 < p < 1 by assumption, it is possible to

choose A sufficiently large so that

| — g=(A-DN 1 — g-(A=1N
p+ho D11 + hy P — < 1. (33)
Thus,
lim [|6ui(?)ifr, = 0.
k—o0
By definition of || - l{x,, this implies
lim ug(?) = u* (7).
k—o0
This completes the proof. |

Remark 3 As case in the continuous time system,

the proposed cantrol law (21) for the discrete-time

1N
T MEwe-1 (Bl
(31)

system has similar effects. With ¢ = 0, the pro-
posed method is the same as the learning law pro-
posed by Hwang et al. [9] and with & = 0 and
A = 0, it is essentially the same as the learning
law proposed by Saab [15]. Therefore the proposed
method can be considered as a generalization of
the previous works [9, 15]. Also, the convergence

conditions in theorem 2 are similar to the previous
works [9, 15].

4. Simulation Example

In the following, we shall consider linear continuous

time-invariant dynamic system as that of Lee [16] :
A R HET
yt) = [0 1][22;]

the desired output trajectory is

Also, suppose

given, as in [16], by

ya(t) =12¢(1—1) 0<t<1

and let
w0 =yw=0 k£=0,1,2,---.

Let us assume that we guess CB = 1.3, so I is cho-
sen as 0.7. As shown in Figure 1, the output y(t)
approaches the desired output yq4(t) as the control
law (5) is repetitively applied. The result in Figure
2 shows ZIICO:I fOT er(t)dt according to the param-
eters, & and ©. Figure 3 shows fOT er(t)dt accord-
ing to the parameters, ® and O, at 10th iteration.
We can show that the tracking performance tends
to heavily depend on the choice of A, $,0, and
the proposed method is more free to adjust both
convergence speed and tracking accuracy and can
improve them by choosing the suitable A, ® and
©. Figure 4 and Figure 5 show that the proposed
method is robust to the external disturbances such

as state disturbances and measurement noise.
5. Conclusion

Robust ILC algorithms based on both time-domain
performance and iteration-domain performance are
presented and the convergence of the proposed al-

gorithms is proved. Also, it is shown by a numeri-



cal example that the proposed method has robust-
ness in the presence of external disturbances. The
proposed algorithms give more freedom for adjust-
ment of convergence speed and tracking accuracy
and can be considered as a generalization of the
previous works [1, 6, 8, 16, 9, 15]. Also, the conver-
gence conditions are similar to the previous works
[1,6,8,16,9, 15]. The proposed ILC will be useful
when ILC is applied to real control systems in the
presence of disturbance.

It should be noted that the present results are
valid when the system is linear and time-invariant.
Since the most of industrial processes are nonlinear
and time-varying, the proposed learning algorithm
should be extended to those systems. Now, we are

studing this proplems.
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Fig. 4 Output Trajectories ( k— x) Fig. 5 Output Trajectories ( k — o)
under state disturbance under measurement noise



