• Title/Summary/Keyword: Convergence Algorithm

Search Result 4,371, Processing Time 0.053 seconds

Convergence Characteristics of the Normalized Blind Equalization Algorithm

  • Lee, Gwang-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.136-139
    • /
    • 2010
  • We derived Stop-and-go normalized DD, dual-mode normalized Sato, dual-mode NCMA blind equalization algorithm for complex data in this research. And then, the convergence characteristics of the proposed SG-NDD, dual-mode NSato blind equalization algorithms are compared with those of SG-DD, dual-mode Sato algorithms. In general, the normalized blind equalization algorithms have better convergence characteristics than the conventional algorithms.

A Convergence Compensation Algorithm for A CRT Projection TV (CRT 프로젝션 TV에서의 Convergence 보정 알고리즘)

  • 강석판;정창기;최두현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.355-358
    • /
    • 2003
  • Basically, the mis-convergence, which is inevitable in CRT Projection TV. is the degree of deviation of red and blue from green beam. The cause of mis-convergence is the change of magnetic field and electrical characteristic in deflection circuits and convergence amplification circuit. A new and easily implementable mis-convergence compensation algorithm is presented in this paper. The proposed algorithm does not needs any compensation devices. It uses only TV OSD and a remote controller and anyone who wants to compensate can easily correct the mismatch. Through real compensation experiments, it is found that the proposed algorithm is useful and effective one.

  • PDF

A Second-Order Iterative Learning Algorithm with Feedback Applicable to Nonlinear Systems (비선형 시스템에 적용가능한 피드백 사용형 2차 반복 학습제어 알고리즘)

  • 허경무;우광준
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.608-615
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for the trajectory-tracking control of nonlinear dynamic systems with unidentified parameters. In contrast to other known methods, the proposed teaming control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a feedback term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances or system parameter variations. The convergence proof of the proposed algorithm is given in detail, and the sufficient condition for the convergence of the algorithm is provided. We also discuss the convergence performance of the algorithm when the initial condition at the beginning of each iteration differs from the previous value of the initial condition. The effectiveness of the proposed algorithm is shown by computer simulation result. It is shown that, by adding a feedback term in teaming control algorithm, convergence speed, robustness to disturbances and robustness to unmatched initial conditions can be improved.

  • PDF

A Study on the Optimum Convergence Factor for Adaptive Filters (적응필터를 위한 최적수렴일자에 관한 연구)

  • 부인형;강철호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.49-57
    • /
    • 1994
  • An efficient approach for the computationtion of the optimum convergence factor is proposed for the LMS algorithm applied to a transversal FIR structure in this study. The approach automatically leads to an optimum step size algorithm at each weight in every iteration that results in a dramatic reduction in terms of convergence time. The algorithm is evaluated in system identification application where two alternative computer simulations are considered for time-invariant and time-varying system cases. The results show that the proposed algorithm needs not appropriate convergence factor and has better performance than AGC(Automatic Gain Control) algorithm and Karni algorithm, which require the convergence factors controlled arbitrarily in computer simulation for time-invariant system and time-varying systems. Also, itis shown that the proposed algorithm has the excellent adaptability campared with NLMS(Normalized LMS) algorithm and RLS (Recursive least Square) algorithm for time-varying circumstances.

  • PDF

Convergence of the Filtered-x Least Mean Fourth Algorithm for Active Noise Control (능동 소음 제어를 위한 Filtered-x 최소 평균 네제곱 알고리듬의 수렴분석)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.616-625
    • /
    • 2002
  • In this paper, we drove the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyzed its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. The application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

A Study for Efficient EM Algorithms for Estimation of the Proportion of a Mixed Distribution (분포 혼합비율의 모수추정을 위한 효율적인 알고리즘에 관한 연구)

  • 황강진;박경탁;유희경
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.68-77
    • /
    • 2002
  • EM algorithm has good convergence rate for numerical procedures which converges on very small step. In the case of proportion estimation in a mixed distribution which has very big incomplete data or of update of new data continuously, however, EM algorithm highly depends on a initial value with slow convergence ratio. There have been many studies to improve the convergence rate of EM algorithm in estimating the proportion parameter of a mixed data. Among them, dynamic EM algorithm by Hurray Jorgensen and Titterington algorithm by D. M. Titterington are proven to have better convergence rate than the standard EM algorithm, when a new data is continuously updated. In this paper we suggest dynamic EM algorithm and Titterington algorithm for the estimation of a mixed Poisson distribution and compare them in terms of convergence rate by using a simulation method.

An Analysis of its Convergence Characteristics and the Adaptive Algorithm for Reducing the Computational Quantities (계산량 감소를 위한 적응 알고리즘 및 수렴특성 분석)

  • 이행우;전만영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.222-228
    • /
    • 2004
  • This paper describes a new adaptive algorithm which can reduce the required computation quantities in the adaptive filter. The proposed adaptive algorithm uses only the signs of the normalized input signal rather than the input signals when coefficients of the filter are adapted. By doing so, there is no need for the multiplications and divisions which are mostly responsible for the computation quantities. To analyze the convergence characteristics of the proposed algorithm, the condition and speed of the convergence are derived mathematically. Also, we simulate an echo canceller adopting this algorithm and compare the performances of convergence for this algorithm with the ones for the other algorithm. As the results of simulations, it is proved that the echo canceller adopting this algorithm shows almost the same performances of convergence as the echo canceller adopting the SIA algorithm.

Geometric Analysis of Convergence of FXLMS Algorithm (FXLMS 알고리즘 수렴성의 기하학적 해석)

  • Kang Min Sig
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.40-47
    • /
    • 2005
  • This paper concerns on Filtered-x least mean square (FXLMS) algorithm for adaptive estimation of feedforward control parameters. The conditions for convergence in ensemble mean of the FXLMS algorithm are derived and the directional convergence properties are discussed from a new geometric vector analysis. The convergence and its directionality are verified along with some computer simulations.

A Fast Algorithm for Real-time Adaptive Notch Filtering

  • Kim, Haeng-Gihl
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.189-193
    • /
    • 2003
  • A new algorithm is presented for adaptive notch filtering of narrow band or sine signals for embedded among broad band noise. The notch filter is implemented as a constrained infinite impulse response filter with a minimal number of parameters, Based on the recursive prediction error (RPE) method, the algorithm has the advantages of the fast convergence, accurate results and initial estimate of filter coefficient and its covariance is revealed. A convergence criterion is also developed. By using the information of the noise-to-signal power, the algorithm can self-adjust its initial filter coefficient estimate and its covariance to ensure convergence.

Convergence Behavior of the filtered-x LMS Algorithm for Active Noise Caneller

  • Lee, Kang-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.10-15
    • /
    • 1998
  • Application of the Filtered-X LMS adaptive filter to active noise cancellation requires to estimate the transfer characteristics between the output and the error signal of the adaptive canceler. In this paper, we derive an adaptive cancellation algorithm and analyze is convergence behavior when the acoustic noise is assumed to consist of multiple sinusoids. The results of the convergence analysis of the Filtered-X LMS algorithm indicate that the effects of parameter estimation inaccuracy on the convergence behavior of the algorithm are characterize by two distinct components : Phase estimation error and estimated magnitude. In particular, the convergence of the Filtered-X LMS algorithm is show to be strongly affected by the accuracy of the phase response estimate. Simulation results of the algorithm are presented which support the theoretical convergence analysis.

  • PDF