• Title/Summary/Keyword: Conventional induction motor

Search Result 349, Processing Time 0.021 seconds

Speed Control of Induction Motor Using Load Torque Feedforward Control (부하토크 피드포워드 제어를 이용한 유도전동기의 속도제어)

  • 서영수;임영배;김영춘;성대용;김종균
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.152-155
    • /
    • 1997
  • This thesis proposed a speed control system for induction motors robust to variations in torque and parameters by feedforward compensating the current portion of load torque, adding a load torque observer to the conventional PI controller in the indirect vector controlled induction motor system. In conclusion, this thesis demonstrate the improved transient characteristic to variations in reference speed and load torque, compared to the conventional PI control method, by means of the feedworward control of the estimated load torque.

  • PDF

Speed Sensorless Vector Control of Wound Induction Motor Using a MRAS Method (MRAS 기법을 이용한 권선형 유도전동기의 속도센서리스 벡터제어)

  • Choi, Hyun-Sik;Lee, Jae-Hak;Um, Tae-Wook
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large resistor externally when starting. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as crane and cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and is generally used for control of current torque, position, and speed for the wound induction motor drive system. However, the conventional control system for wound induction motor may result in poor performance because sensors have to be used but are often limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents a MRAS method for sensorless vector control of the wound induction motor drive. In the conventional MRAS method, in low frequency, the stator resistance variation may result in poor performance. Therefore, this paper presents a MRAS method with stator and rotor resistance tuning for sensorless vector control of the wound induction motor to overcome several shortages of the conventional MRAS caused by parameter variation and to enhance the robustness of the sensorless vector control. The validity and effectiveness of the proposed method is verified through digital simulation.

A study on the speed control of ship propulsion induction motor using improved AFE rectifier

  • HUR, Jae-Jung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • This paper proposes a possibility of using active front-end rectifier with the SVPWM method for induction motor speed control, which is applicable to small electric propulsion boats. The proposed method can produce a more precise sinusoidal input current waveform and a higher power factor than conventional methods. Its speed, torque, input current, DC voltage, and load current control performance are similar to or better than those of conventional methods. Through computer simulations using the PSIM program, the validity of the proposed method was verified by comparing and analyzing the characteristics of the conventional methods and the proposed method.

Auto tuning method for vector control of Induction Motor (유도전동기의 벡터제어를 위한 자기동조기법)

  • Noh, Young-Nam;Yi, Eun-Gyu;Jeong, Eull-Gi;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2139-2142
    • /
    • 1997
  • The most important thing in vector control scheme is the knowledge of accurate electrical motor parameters. These parameters can computed by conventional motor test, such as no-load and locked rotor tests. However, the values from these tests are different from actual motor parameters, and the adjustment process of the parameters is time consuming. This paper presents an auto-tuning method for vector control of induction motor. The tuning algorithm is based on the rotor flux behavior of the induction motor for stepwise torque current command. The transient terminal voltage caused by the undesirable variation of the rotor flux is used for tuning the slip gain $K_5$ defined as the inverse of the rotor time constant. The electrical parameters of induction motor can also calculated by this method. The presented method is evaluated through the computer simulations.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

Load Variation Compensated Neural Network Speed Controller for Induction Motor Drives

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Young-Tae;Kim, Hee-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.97-102
    • /
    • 2003
  • In this paper, a recurrent artificial neural network (RNN) based self-tuning speed controller is proposed for the high-performance drives of induction motors. The RNN provides a nonlinear modeling of a motor drive system and could provide the controller with information regarding the load variation system noise, and parameter variation of the induction motor through the on-line estimated weights of the corresponding RNN. Thus, the proposed self-tuning controller can change the gains of the controller according to system conditions. The gain is composed with the weights of the RNN. For the on-line estimation of the RNN weights, an extended Kalman filter (EKF) algorithm is used. A self-tuning controller is designed that is adequate for the speed control of the induction motor The availability of the proposed controller is verified through MATLAB simulations and is compared with the conventional PI controller.

The Efficiency Optimization Control of an Indirect Vector-Controlled Induction Motor Drive (간접벡터제어 유도전동기의 효율 최적화 운전)

  • Choi, Jin-Ho;Shin, Jae-Hae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.352-354
    • /
    • 2000
  • The induction motor is a high-efficiency machine when working close to its rated operation point. This paper uses a simple induction motor model that includes iron losses. The model, which only requires the knowledge of conventional induction motor parameters, is referred to a field-oriented frame. At steady-state light-load condition the minimum point of the input power can be found with the condition that it is possible to obtain the same torque with different combinations of flux and current values. Using the minimum point. the drive system with the proposed efficiency optimization controller can be controlled easily. Simulation and experimental results show the effectiveness of the control strategy proposed for an induction motor drive.

  • PDF

Design of a Linear Induction Motor with Squirrel Cage Secondary (농형 2차측을 갖는 선형유도전동기의 설계)

  • Park, Seung-Chan;Woo, Kyung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, design procedures of a linear induction motor(LIM) with squirrel cage secondary are presented. The electrical and magnetic loadings are determined by the conventional criteria of the linear induction motors with sheet secondary. Electromagnetic fields of the designed motor are analyzed using finite element method, and characteristics of thrust and currents are presented.

  • PDF

Fuzzy control of Induction motor using microprocessor (마이크로프로세서를 이용한 유도 전동기의 퍼지제어)

  • 김동희;오시창;신위재;이증화
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.180-185
    • /
    • 1995
  • In this paper, we designed the speed controller with high accuracy and speedy steady-state response, in Induction motor control system, Fuzzy P-1 controller of Induction motor using Microprocessor have an appropriate fuzzy rule matrix (which is 2-separate Look-up Table) The usefulness of proposed fuzzy P-1 controller will be confirmed by experiments which we compare with conventional P-1 controller.

  • PDF

The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics (단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계)

  • Lee Chul-kyu;Kwon Soon-hyo;Yang Byung-yull;Kwon Byung-il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.