• Title/Summary/Keyword: Conventional Train

Search Result 585, Processing Time 0.033 seconds

A Study on Running Performance the high speed line and the conventional line for KTX (고속철도 차량의 고속선 및 기존선에 대한 주행성능 검토)

  • Park Haeng-Ran;Kim Jae-Chul;Jeon Eung-Sik;Kim Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.192-198
    • /
    • 2004
  • KTX is the high speed train which is designed for 300km/h in maximum operation speed. But its long train set may cause unstable characters as swaying of the tail of a train and when the train is running on conventional line not on the high speed line, its funning safety is a point to be considered cautiously. In this study, we evaluated the running safety by the numerical analysis using VAMPIRE and compared the result with the test result of KHST, which is being in performance tests, for verifying the validity of analysis results.

  • PDF

A study on the Ride Comfort for High Speed Train on the High Speed Line/Conventional Line (고속선/기존선 연계운행에 대한 고속철도 차량의 승차감에 관한 연구)

  • 김영국;김석원;박찬경;김기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.206-211
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The concept of ride comfort is equivocal. Generally, it is defined as the body vibration. The commercial high-speed train must be run the compound line in Korea which is composed of high-speed line and conventional line. In this paper, the ride comfort has been reviewed by the various experimental methods when the high-speed train is operated on both lines. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on both lines.

  • PDF

Evaluation of Noise Characteristics around the Conventional Turnout System through the Field Measurements (기존선 분기기시스템 인근 소음측정 및 분석)

  • Shin, Han-Chul;Eum, Ki-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.985-992
    • /
    • 2008
  • A turnout system which permits trains to pass from one track to another is a combination of the switch, the crossing, lead rails which are necessary to connect the switch and the crossing, two guard rails and a switch machine for operating the switch. A turnout is the sole moving part among the railway components and has complex configuration, so the safety has always been raised an issue. In Korea, it is planned to adopt the high speed tilting train, which operates at the maximum speed of 180km/h, at conventional lines by the year of 2010. However, for the application of the tilting train to conventional lines, it is prerequisite to establish a stable turnout system allowing the tilting train to pass through it without reducing speed. Therefore, the improved turnout system for the speed-up of conventional lines has been developed and the prototype of the turnout system has been constructed. In this study, evaluation of noise characteristics around the improved turnout system was performed through the field measurements. Field measurements of noise around the conventional and the high-speed turnout system were also carried out for the comparison.

  • PDF

Evaluation of Vibration Characteristics around the Conventional, Turnout System through the Field Measurements (현장측정을 통한 분기기시스템 주변의 진동특성 평가)

  • Kim, Young-Ha;Eum, Ki-Young;Shin, Min-Ho;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1000-1005
    • /
    • 2008
  • A turnout system which permits trains to pass from one track to another is a combination of the switch, the crossing, lead rails which are necessary to connect the switch and the crossing, two guard rails and switch machines for operating the switch. A turnout is the sole moving part among the railway components and has complex configuration, so the safety has always been raised an issue. In Korea, it is planned to adopt the high speed tilting train, which operates at the maximum speed of 180km/h, at conventional lines. However, for the application of the tilting train to conventional lines, it is prerequisite to establish a stable turnout system allowing the tilting train to pass through it without reducing speed. Therefor, the improved turnout system for the speed-up of conventional lines has been developed and the prototype of the turnout system has been constructed. In this study, evaluation of Vibration characteristics around the improved turnout system was performed through the field measurements. Field measurements of Vibration around the conventional and the high-speed turnout system were also carried out for the comparison.

  • PDF

A Running Safety and Fastening System Investigation of Tilting Train (틸팅열차의 주행안전성 및 체결력 검토)

  • Lee, Ju-Won;Seong, Dae-Jung;Cheon, Ju-Hyun;Eum, Ki-Young;Shin, Hyun-Mock
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1855-1860
    • /
    • 2007
  • The high speed tilting train has superior advantages which are effects on reductions of running time to non-tilting in curves. But in order that the tilting train is operated in conventional track, it is performed evaluation on the running safety. This study carried out an analysis of running stability of tilting train in conventional curved track. The results obtained through this study will be applied to improve the conventional curved track and determine the limit velocity.

  • PDF

A Study on the Improvement of Quality for Tilting Train Wheel (틸팅차량용 차륜 성능 향상 방안 연구)

  • Hur, Hyun-Moo;Seo, Jung-Won;Kwon, Seok-Jin;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.262-267
    • /
    • 2006
  • The maximum speed of the conventional railway rolling-stock which is restrained to 150km/h will be increased to 200km/h with the development of korean tilting train. The improvement of quality for railway wheel which is closely connected with the safety of train is needed. On the one hand, the speed limit of the wheel standard for the conventional rolling-stock is 150km/h. Thus, a study on the safety of wheel structure, test items and criteria is needed to apply this standard to tilting train wheel. This study is started to present the improvement scheme and to extend the speed limit for conventional wheel standard. For this, we studied the safety of wheel structure, wheel material tests and the criteria for wheel standard and show the results

  • PDF

Investigation on dynamic behaviour of conventional railway bridge subjected to high speed train loading (고속열차 주행에 따른 기존철도교의 동적거동 특성분석)

  • 오지택;양신추;민경주;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.79-86
    • /
    • 1998
  • The purpose of this paper is to examine the validation to passage of high speed train on conventional railway bridges. The dynamic behavior of bridge is analyzed by using the developed 3-D program. The train is assumed to moving loads and track to distributed masses. The centrifugal force due to curved track is also considered. The numerical results are compared with those measured in the site to demonstrate the efficiency of the developed program. From the parametric study, it is notified that conventional bridge gives good serviceability to passage of high speed train, specially such as TGV-K.

  • PDF

The Study of Tilting Train Test for electromagnetic interference(EMI) (한국형 틸팅열차 EMI에 관한 연구)

  • Song, Yong-Soo;Han, Seong-Ho;Jang, Dong-Uk;Lee, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.494-496
    • /
    • 2008
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed tilting train to evaluate electromagnetic interference(EMI) performance of TTX(tilting train express) with maximum operation speed 160 km/h on Ho_nam Conventional Rail[1].

  • PDF

Measurement and analysis of Pressure fluctuation by high speed train passing through tunnels in conventional line (기존선 터널 주행시의 고속열차 차체가 받는 압력변동 계측 및 분석)

  • Lee Uk-Jae;Park Choon-Soo;Seo Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.883-888
    • /
    • 2004
  • Pressure waves are generated when high speed train runs through the tunnels. These pressure waves not only affect passenger's health, but also can cause fatigue failures on the vehicle structure. The current high speed train should run on the conventional lines. In this study, pressure fluctuations by the high speed trains such as G7 Korea High Speed Train and Korea Train eXpress are measured in the cabin and the carbody surface when they pass through the tunnels. The measured results are analyzed and the related parameters are investigated.

  • PDF

Introduction of Development Status of the Korean Tilting Train eXpress (한국형 틸팅열차 개발 현황 소개)

  • Seo, Sung-Il;Han, Seong-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.229-233
    • /
    • 2005
  • This paper explains development status of the Korean tilting train. The Korean Tilting Train eXpress (TTX) project has been carried out to develop all the core technologies related to tilting train and infra-technology to provide high speed inter-city service with the speed of 180 km/h as well as maintenance-free technology for conventional railway system. The TTX project is under 5th stage. In this stage, manufacturing and combination test for the main components are being conducted. By the end of next year, assembly of TTX will be completed.

  • PDF