• 제목/요약/키워드: Controlled drug delivery

Search Result 183, Processing Time 0.028 seconds

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

Electrospun poly (lactic-co-glycolic acid)(PLGA) nanoparticles for controlled drug delivery system

  • Lee, Jue-Yeon;Lee, Meong-Hee;Park, Won-Ho;Min, Beong-Moo;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.227.2-228
    • /
    • 2003
  • In many biodegradable polymers recently investigated, poly(lactic acid)(PLA) or poly(lactic-co-glycolic acid)(PLGA) have extensively been utilized as drug delivery systems for sustained release drug delivery. Recently, there has been increased interest in electrospinning, which can produce fibers that are sub-micron in diameter. This technique has been applied to various micro/nano fabrication areas using numerous polymers but very few uses in the sharmaceutical area have been reported. (omitted)

  • PDF

In vitro and in vivo studies on theophylline mucoadhesive drug delivery system

  • Bandyopadhyay, AK;Perumal, P
    • Advances in Traditional Medicine
    • /
    • v.7 no.1
    • /
    • pp.51-64
    • /
    • 2007
  • Mucus is an aqueous gel complex with a constitution of about 95% water, high molecular weight glycoprotein (mucin), lipid, salts etc. Mucus appears to represent a significant barrier to the absorption of some compounds. Natural mucoadhesive agent was isolated and purified from the aqueous extract of the seeds of prosopis pallida (PP). Formulated tablet with the isolated material by wet granulation method. Some natural edible substances are in consideration for candidates as mucoadhesive agents to claim more effective controlled drug delivery as an alternative to the currently used synthetic mucoadhesive polymers. Subjected the materials obtained from natural source i.e. PP and standard synthetic substance, sodium carboxymethyl cellulose for evaluation of mucoadhesive property by various in vitro and in vivo methods. Through standard dissolution test and a model developed with rabbit, evaluated in vitro controlled release and bioadhesive property of theophylline formulation. Mucoadhesive agent obtained from PP showed good mucoadhesive potential in the demonstrated in vitro and in viνo models. The results suggest that the mucoadhesive agent showed controlled release properties by their application, substantially. In order to assess the gastrointestinal transit time in vivo, a radio opaque X-ray study performed in healthy rabbit testing the same controlled release formulation with and without bioadhesive polymer. Plasma levels of theophylline determined by the HPLC method and those allowed correlations to the in vitro mucoadhesive study results. Better correlation found between the results in different models. PP may acts as a better natural mucoadhesive agent in the extended drug delivery system.

Fabrication and Characterization of Flurbiprofen loaded Chitosan Beads for Periodontal Regeneration (치주조직 재생용 플루르비프로펜 함유 키토산 비드의 제조 및 용출특성)

  • Rhee, Su-Jin;Park, Yoon-Jeong;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 1997
  • With the aim of improving periodontal regeneration efficacy, as a biodegradable local drug delivery device, drug releasing chitosan beads were prepared. Chitosan beads were prepared through the formation of intermolecular or intramolecular ionic interaction bewteen chitosan and sodium tripolyphosphate and were loaded with flurbiprofen. The mean diameter of the beads was $250\;{\mu}m$. Drug loading efficiency was improved by regulating the pH of tripolyphosphate solution. The drug release kinetics mainly depended upon the hydrophobic properties of the flurbiprofen, that is, the release of flurbiprofen showed initial burst with rapid release for the first day followed by a levelling off of the release rate. However, the release rate could be controlled by the formulation factor including the pH, concentration of the tripolyphosphate solution, gelation time, drug contents. From these results, flurbiprofen loaded chitosan beads were anticipated as biodegradable local drug delivery devices for periodontal regeneneration.

  • PDF

Functional Polymers for Drug Delivery Systems in Nanomedicines

  • Lee, Eun-Seong;Kim, Ji-Hoon;Yun, Jeong-Min;Lee, Kyung-Soo;Park, Ga-Young;Lee, Beom-Jin;Oh, Kyung-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.45-61
    • /
    • 2010
  • Polymeric based nanomedicines have been developed for diagnosing, treating, and preventing diseases in human body. The nanosized drug delivery systems having various structures such as micelles, nanogels, drug-conjugates, and polyplex were investigated for a great goal in pharmaceutics: increasing therapeutic efficacy for diseases and decreasing drug toxicity for normal tissues. The functional polymers used for constituting these drug delivery systems should have several favorable properties such as stimuli-responsibility and biodegrdability for controlled drug release, and solublization capacity for programmed drug encapsulation. This review discusses recent developments and trends of functional polymers (e.g., pH-sensitive polymers, biodegradable polymers, and cationic polymers) used for nanosized drug carriers.

Photoresponsive Nanocontainers with Ordered Porous Channels

  • Cho, Wansu;Kwon, Youngje;Park, Chiyoung
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.149-155
    • /
    • 2019
  • Controlled mass transport in response to stimuli is essential for drug carriers. The complexity of the signaling system under physiological conditions has led researchers to develop precise nanocontainers that respond to stimuli in the physiological environment. Owing to several reasons, soft nanocontainers such as liposomes and micelles have been investigated for use as drug delivery systems. However, such carriers often suffer from the undesired leakage of drug molecules. In contrast, inorganic nanocontainers are robust, and their surfaces can be easily functionalized. For example, mesoporous silica nanoparticles equipped with gatekeeper molecules are increasingly being used for the controlled release of drug molecules in response to the desired stimuli. Since the development of the first hybrid nanocontainer comprising molecular machines, multiple versions of such gatekeeper systems featuring significantly improved stability and precise response to stimuli have been reported. In this study, various methods for incorporating photoresponsive nanocontainers with porous channels are developed.

Photoresponsive Hydrogels as Drug Delivery Systems

  • Abueva, Celine DG.;Chung, Phil-Sang;Ryu, Hyun-Seok;Park, So-Young;Woo, Seung Hoon
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.6-11
    • /
    • 2020
  • Hydrogels have been developed and used in tissue engineering and regenerative medicine to deliver therapeutics to injured or diseased tissue because of their versatility and properties that can be tailored to match the natural extracellular matrix. Hydrogels can be made with a variety of physical and chemical properties combined with light responsiveness ideal for applications in different fields of medicine that require the spatiotemporal control of therapeutics. Light, as a stimulus, is relatively inexpensive, contact-free, noninvasive with high spatial resolution and temporal control, convenient and easy to use, and allows deep tissue penetration that is relatively harmless. Photoresponsive hydrogels are ideal candidates for on-demand drug delivery systems that are capable of sustained and controlled drug release, minimizing the side effects, and ensuring the activity and efficient delivery of drugs to the target tissue.

Alginate Beads as Controlled Release Polymeric Drug Delivery System (Alginate Bead를 이용한 고분자 약물의 제어방출형 약물수송체)

  • Hwang, Sung-Joo;Rhee, Gye-Ju;Jo, Hang-Bum;Lee, Ki-Myung;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 1993
  • The purpose of this paper is to explore the possible applicability of alginate beads as an oral controlled release system of polymeric drugs. Cellulase was used as a model polymeric drug. The release of cellulase from alginate beads was moderately affected by the ratio of cellulase to sodium alginate and strongly affected by $CaCl_2$ concentration. However, the release was not particularly affected by the other factors such as sodium alginate concentration and curing time. The drug was not released from alginate beads at pH 1.2, but was released continuously up to 8 hr at pH 6.8. At pH 6.8, the beads were swollen highly up to 3 hr, thereafter, were eroded into the bulk solution up to 6 hr, completely. Drug release from the beads can be caused due to diffusion and erosion of the matrix. Activity of cellulase was reduced when alginate beads containing cellulase were stored in simulated gastric juice. Further investigation would be necessary to improve the acid resistance of the beads. Since the release of cellulase as a model polymeric drug could be controlled by the regulation of the preparation conditions of alginate beads, the alginate beads may be used for a potential oral controlled release system of such polymeric drugs as polypeptide drugs.

  • PDF

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF

FA/Mel@ZnO nanoparticles as drug self-delivery systems for RPE protection against oxidative stress

  • Yi, Caixia;Yu, Zhihai;Sun, Xin;Zheng, Xi;Yang, Shuangya;Liu, Hengchuan;Song, Yi;Huang, Xiao
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2022
  • Drug self-delivery systems can easily realize combination drug therapy and avoid carrier-induced toxicity and immunogenicity because they do not need non-therapeutic carrier materials. So, designing appropriate drug self-delivery systems for specific diseases can settle most of the problems existing in traditional drug delivery systems. Retinal pigment epithelium is very important for the homeostasis of retina. However, it is vulnerable to oxidative damage and difficult to repair. Worse still, the antioxidants can hardly reach the retina by non-invasive administration routes due to the ocular barriers. Herein, the targeted group (folic acid) and antioxidant (melatonin) have been grafted on the surface of ZnO quantum dots to fabricate a new kind of drug self-delivery systems as a protectant via eyedrops. In this study, the negative nanoparticles with size ranging in 4~6 nm were successfully synthesized. They could easily and precisely deliver drugs to retinal pigment epithelium via eyedrops. And they realized acid degradation to controlled release of melatonin and zinc in retinal pigment epithelium cells. Consequently, the structure of retinal pigment epithelium cells were stabilized according to the expression of ZO-1 and β-catenin. Moreover, the antioxidant capacity of retinal pigment epithelium were enhanced both in health mice and photic injury mice. Therefore, such new drug self-delivery systems have great potential both in prevention and treatment of oxidative damage induced retinal diseases.