DOI QR코드

DOI QR Code

FA/Mel@ZnO nanoparticles as drug self-delivery systems for RPE protection against oxidative stress

  • Yi, Caixia (School of Sports and Health Science, Tongren University) ;
  • Yu, Zhihai (Department of Urology, Chongqing University Three Gorges Hospital) ;
  • Sun, Xin (School of Sports and Health Science, Tongren University) ;
  • Zheng, Xi (School of Sports and Health Science, Tongren University) ;
  • Yang, Shuangya (School of Sports and Health Science, Tongren University) ;
  • Liu, Hengchuan (Department of Urology, Chongqing University Three Gorges Hospital) ;
  • Song, Yi (Department of Neurosurgery, Chongqing University Three Gorges Hospital) ;
  • Huang, Xiao (School of Sports and Health Science, Tongren University)
  • Received : 2021.09.07
  • Accepted : 2022.05.15
  • Published : 2022.07.25

Abstract

Drug self-delivery systems can easily realize combination drug therapy and avoid carrier-induced toxicity and immunogenicity because they do not need non-therapeutic carrier materials. So, designing appropriate drug self-delivery systems for specific diseases can settle most of the problems existing in traditional drug delivery systems. Retinal pigment epithelium is very important for the homeostasis of retina. However, it is vulnerable to oxidative damage and difficult to repair. Worse still, the antioxidants can hardly reach the retina by non-invasive administration routes due to the ocular barriers. Herein, the targeted group (folic acid) and antioxidant (melatonin) have been grafted on the surface of ZnO quantum dots to fabricate a new kind of drug self-delivery systems as a protectant via eyedrops. In this study, the negative nanoparticles with size ranging in 4~6 nm were successfully synthesized. They could easily and precisely deliver drugs to retinal pigment epithelium via eyedrops. And they realized acid degradation to controlled release of melatonin and zinc in retinal pigment epithelium cells. Consequently, the structure of retinal pigment epithelium cells were stabilized according to the expression of ZO-1 and β-catenin. Moreover, the antioxidant capacity of retinal pigment epithelium were enhanced both in health mice and photic injury mice. Therefore, such new drug self-delivery systems have great potential both in prevention and treatment of oxidative damage induced retinal diseases.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 31800839), Growth Project of Youth Science and Technology Talent of Guizhou Education Committee (No. KY2022069) and High-level Innovative Talents in Guizhou Province (No. 2018-2016-023).

References

  1. Ahmed, T.A., Alzahrani, M.M., Sirwi, A. and Alhakamy, N.A. (2021), "Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing transethosomes nanoparticles", Pharmaceutics, 13(2), 151. https://doi.org/10.3390/pharmaceutics13020151.
  2. Alvarez-Barrios, A., Alvarez, L., Garcia, M., Artime, E., Pereiro, R. and Gonzalez-lglesias, H. (2021), "Antioxidant defenses in the human eye: A focus on metallothioneins", Antioxidants, 10(1), 89. https://doi.org/10.3390/antiox10010089.
  3. Baumal, C.R., Spaide, R.F., Vajzovic, L., Freund, K.B., Walter, S.D., John, V., Rich, R., Chaudhry, N, Lakhanpal, R.R and Oellers, P.R. (2020), "Retinal vasculitis and intraocular inflammation after intravitreal injection of brolucizumab", Ophthalmology, 127(10), 1345-1359. https://doi.org/10.1016/j.ophtha.2020.04.017.
  4. Bourassa, P. and Tajmir-Riahi, H.A. (2015), "Folic acid binds DNA and RNA at different locations", Int. J. Biol. Macromol., 74, 337-342. https://doi.org/10.1016/j.ijbiomac.2014.12.007.
  5. Chang, C.C., Huang, T.Y., Chen, H.Y., Huang, T.C., Lin, L.C, Chang, Y.J. and Hsia S.M. (2018), "Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells", Oxid. Med. Cell. Longev., 2018, 9015765. https://doi.org/10.1155/2018/9015765.
  6. Dieguez, H.H., Fleitas, M.F.G., Aranda, M.L., Calanni, J.S., Sarmiento, M.I.K., Chianelli M.S., Alaimo, A., Sande, P.H., Romeo, H.E. Rosenstein, R.E. and Dorfman, D. (2020), "Melatonin protects the retina from experimental nonexudative age-related macular degeneration in mice", J. Pineal Res., 68(4), e12643. https://doi.org/10.1111/jpi.12643.
  7. Dubashynskaya, N.V., Golovkin, A.S., Kudryavtsev, I.V., Prikhodko, S.S., Trulioff, A.S., Bokatyi, A.N., Poshina, D.N., Raik, S.V. and Skorik, V.A. (2020), "Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone", Int. J. Biol. Macromol., 158, 811-818. https://doi.org/10.1016/j.ijbiomac.2020.04.251.
  8. Eixenberger, J.E., Anders, C.B., Wada, K., Reddy, K.M., Brown, R.J., Moreno-Ramirez J., Weltner, A.E., Karthik, C., Tenne, D.A. and Fologea, D. (2019), "Defect engineering of ZnO nanoparticles for bioimaging applications", ACS Appl. Mater. Inter., 11(28), 24933-24944. https://doi.org/10.1021/acsami.9b01582.
  9. Ge, Y., Zhang, A., Sun, R., Xu, J., Yin, T., He, H., Gou, J., Kong, J., Zhang, Y. and Tang, X. (2020), "Penetratin modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration", Expert Opin. Drug Del., 17(4), 603-619. https://doi.org/10.1080/17425247.2020.1735348.
  10. Horibe, Y., Hosoya, K., Kim, K.J., Ogiso, T. and Lee, V.H.L. (1997), "Polar solute transport across the pigmented rabbit conjunctiva: Size dependence and the influence of 8-bromo cyclic adenosine monophosphate", Pharm. Res., 14(9), 1246-1251. https://doi.org/10.1023/A:1012123411343.
  11. Huang, X., Chen, C., Zhu, X., Zheng, X., Li, S., Gong, X., Xiao, Z., Jiang, N., Yu, C. and Yi, C. (2019), "Transdermal BQ-788/EA@ZnO quantum dots as targeting and smart tyrosinase inhibitors in melanocytes", Mater. Sci. Eng. C, 102, 45-52. https://doi.org/10.1016/j.msec.2019.04.042.
  12. Huang, X., Wang, W., Zheng, X., Zhang, X. and Wang, Z. (2020), "Magnesium trisilicate coated Fe3O4 nanoparticles as prompt and efficient lactic acid removers potential for exercise-induce fatigue prevention", J. Biomed. Nanotechnol., 16(4), 531-537. https://doi.org/10.1166/jbn.2020.2903.
  13. Huang, X., Yi, C., Fan, Y., Zhang, Y., Zhao, L., Liang, Z. and Pan, J. (2014), "Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded beta-cyclodextrin potential for ovarian cancer dual-targeting therapy", Mater. Sci. Eng. C, 42, 325-332. https://doi.org/10.1016/j.msec.2014.05.041.
  14. Huang, X., Zheng, X., Xu, Z. and Yi, C. (2017), "ZnO-based nanocarriers for drug delivery application: From passive to smart strategies", Int. J. Pharm., 534(1-2), 190-194. https://doi.org/10.1016/j.ijpharm.2017.10.008.
  15. Ilinskaya, A.N., Clogston, J.D., McNeil, S.E. and Dobrovolskaia M.A. (2015), "Induction of oxidative stress by Taxol (R) vehicle Cremophor-EL triggers production of interleukin-8 by peripheral blood mononuclear cells through the mechanism not requiring de novo synthesis of mRNA", Nanomed. Nanotechnol., 11(8), 1925-1938. https://doi.org/10.1016/j.nano.2015.07.012.
  16. Kim, J., Cho, K. and Choung, S.Y. (2020), "Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina", Free Radical Bio. Med., 152, 622-631. https://doi.org/10.1016/j.freeradbiomed.2019.12.003.
  17. Lajunen, T., Hisazumi, K., Kanazawa, T., Okada, H., Seta, Y., Yliperttula, M., Urtti, A. and Takashima, Y. (2014), "Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes", Eur. J. Pharm. Sci., 62, 23-32. https://doi.org/10.1016/j.ejps.2014.04.018.
  18. Li, J., Cheng, T., Tian, Q., Cheng, Y., Zhao, L., Zhang, X. and Qu, Y. (2019), "A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye", Drug Deliv., 26(1), 188-198. https://doi.org/10.1080/10717544.2019.1571122.
  19. Liu, X., Jiang, J. and Meng, H. (2019), "Transcytosis-An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery", Theranostics, 9(26), 8018-8025. https://doi.org/10.7150/thno.38587.
  20. Liu, Y., Zeng, F., Sun, B. and Jia, P. (2020), "Research on XRD and FTIR spectra of fly ash in different particle size from Gujiao power plant", Spectrosc. Spect. Anal., 40(5), 1452-1456. https://doi.org/10.3964/j.issn.1000-0593(2020)05-1452-05.
  21. Mao, L., Yang, J., Yue, J., Chen, Y., Zhou, H., Fan, D., Zhang, Q., Buraschi, S., Iozzo, R.V. and Bi, X. (2021), "Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis", Matrix Biol., 95, 1-14. https://doi.org/10.1016/j.matbio.2020.10.001.
  22. Mehrzadi, S., Hemati, K., Reiter, R.J. and Hosseinzadeh, A. (2020), "Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment", Expert Opi. Ther. Tar., 24(4), 359-378. https://doi.org/10.1080/14728222.2020.1737015.
  23. Mohsen, A.M., Salama, A. and Kassem, A.A. (2020), "Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation", J. Drug Deliv. Sci. Tec., 59, 101910. https://doi.org/10.1016/j.jddst.2020.101910.
  24. Mu, W., Chu, Q., Liu, Y. and Zhang, N. (2020), "A review on nano-based drug delivery system for cancer chemoimmunotherapy", Nano-Micro Lett., 12(1), 142. https://doi.org/10.1007/s40820-020-00482-6.
  25. Piscatelli, J.A., Ban, J., Lucas, A.T. and Zamboni, W.C. (2021), "Complex factors and challenges that affect the pharmacology, safety and efficacy of nanocarrier drug delivery systems", Pharmaceutics, 13(1), 114. https://doi.org/10.3390/pharmaceutics13010114.
  26. Qin, S.Y., Zhang, A.Q., Cheng, S.X., Rong, L. and Zhang, X.Z. (2017), "Drug self-delivery systems for cancer therapy", Biomaterials, 112, 234-247. https://doi.org/10.1016/j.biomaterials.2016.10.016.
  27. Rehman A.U., Abbas, S.M., Ammad, H.M., Badshah, A., Ali, Z. and Anjum, D.H. (2013), "A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion", Mater. Lett., 108, 253-256. https://doi.org/10.1016/j.matlet.2013.07.009.
  28. Rodriguez-Menendez, S., Garcia, M., Fernandez, B., Alvarez, L., Fernandez-Vega-Cueto, A., Coca-Prados, M., Pereiro, R. and Gonzalez-lglesias H. (2018), "The zinc-metallothionein redox system reduces oxidative stress in retinal pigment epithelial cells", Nutrients, 10(12), 1874. https://doi.org/10.3390/nu10121874.
  29. Rzhanova, L.A., Kuznetsova, A.V. and Aleksandrova, M.A. (2020), "Reprogramming of differentiated mammalian and human retinal pigment epithelium: current achievements and prospects", Russ. J. Dev. Biol., 51(4), 212-230. https://doi.org/10.1134/S1062360420040062.
  30. Said, M., Aboelwafa, A.A., Elshafeey, A.H. and Elsayed, I. (2021), "Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole", J. Drug Deliv. Sci. Tec., 61, 102075. https://doi.org/10.1016/10.1016/j.jddst.2020.102075.
  31. Saito, Y., Kuse, Y., Inoue, Y., Nakamura, S., Hara, H. and Shimazawa, M. (2018), "Transient acceleration of autophagic degradation by pharmacological Nrf2 activation is important for retinal pigment epithelium cell survival", Redox Biol., 19, 354-363. https://doi.org/10.1016/j.redox.2018.09.004.
  32. Sekine, H. and Motohashi, H. (2021), "Roles of CNC transcription factors NRF1 and NRF2 in cancer", Cancers, 13(3), 541. https://doi.org/10.3390/cancers13030541.
  33. Shen, J., Wolfram, J., Ferrari, M. and Shen, H. (2017), "Taking the vehicle out of drug delivery", Mater. Today, 20(3), 95-97. https://doi.org/10.1016/j.mattod.2017.01.013.
  34. Singh, T.A., Das, J. and Sil, P.C. (2020), "Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks", Adv. Colloid Interfac., 286, 102317. https://doi.org/10.1016/j.cis.2020.102317.
  35. Song, H., Zheng, J., He, W., Wang, P. and Wang, F. (2019), "Activation of cofilin increases intestinal permeability via depolymerization of F-actin during hypoxia in vitro", Front. Physiol., 10, 1455. https://doi.org/10.3389/fphys.2019.01455.
  36. Subrizi, A, del Amo, E.M., Korzhikov-Vlakh, V., Tennikova, T., Ruponen, M. and Urtti, A. (2019), "Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties", Drug Discov. Today, 24(8), 1446-1457. https://doi.org/10.1016/j.drudis.2019.02.001
  37. Suen, W.L.L. and Chau, Y. (2013), "Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity", J. Control. Release, 167 (1), 21-28. https://doi.org/10.1016/j.jconrel.2013.01.004.
  38. Tambe, V., Raval, N., Gondaliya, P., Bhattacharya, P., Kalia, K. and Tekade, R.K. (2021), "To investigate fit-to-purpose nanocarrier for non-invasive drug delivery to posterior segment of eye", J. Drug Deliv. Sci. Tec., 61, 102222. https://doi.org/10.1016/j.jddst.2020.102222.
  39. Uthaiwat, P., Priprem, A., Puthongking, P., Daduang, J., Nukulkit, C., Chio-Srichan, S., Boonsiri, P. and Thapphasaraphong, S. (2021), "Characteristic evaluation of gel formulation containing niosomes of melatonin or its derivative and mucoadhesive properties using ATR-FTIR spectroscopy", Polymers, 13(7), 1142. https://doi.org/10.3390/polym13071142.
  40. Wang, R., Gao, Y., Liu, A. and Zhai, G. (2021), "A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances", J. Drug Target., 29(7), 687-702. https://doi.org/10.1080/1061186X.2021.1878366.
  41. Warsi, M.H. (2021), "Development and optimization of vitamin E TPGS based PLGA nanoparticles for improved and safe ocular delivery of ketorolac", J. Drug Deliv. Sci. Tec., 61, 102121. https://doi.org/10.1016/j.jddst.2020.102121.
  42. Wilhelm, S., Tavares, A.J., Dai, Q., Qhta, S., Audet, J., Dvorak, H.F. and Chan, W.C.W. (2016), "Analysis of nanoparticle delivery to tumours", Nat. Rev. Mater., 1(5), 16014. https://doi.org/10.1038/natrevmats.2016.14.
  43. Yadav, M., Schiavone, N., Guzman-Aranguez, A., Giansanti, F., Papucci, L., de Lara, M.J.P., Singh, M. and Kaur, I.P. (2020), "Atorvastatin-loaded solid lipid nanoparticles as eye drops: proposed treatment option for age-related macular degeneration (AMD)", Drug Deliv. Transl. Res., 10(4), 919-944. https://doi.org/10.1007/s13346-020-00733-4.
  44. Yang, X., Wang, L., Li, L., Han, M., Tang, S., Wang, T., Han, J., He, X., He, X., Wang, A. and Sun, K. (2019), "A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment", Drug Deliv., 26(1), 989-1001. https://doi.org/10.1080/10717544.2019.1667455.
  45. Yu, K., Liu, M., Dai, H. and Huang, X. (2020), "Targeted drug delivery systems for bladder cancer therapy", J. Drug Deliv. Sci. Tech., 56, 101535. https://doi.org/10.1016/j.jddst.2020.101535.
  46. Zhao, L.P., Zheng, R.R., Huang, J.Q., Chen, X.Y., Deng, F.A., Liu, Y.B., Huang, C.Y., Yu, X.Y., Cheng, H. and Li, S.Y. (2020), "Self-delivery photo-immune stimulators for photo-dynamic sensitized tumor immunotherapy", ACS Nano, 14(12), 17100-17113. https://doi.org/10.1021/acsnano.0c06765.
  47. Zhao, Y., Gao, J., Zhang, Y., Gan, X. and Yu, H. (2021), "Cyclosporine a promotes bone remodeling in LPS-related inflammation via inhibiting ROS/ERK signaling: Studies In vivo and in vitro", Oxid. Med. Cell. Longev., 8836599. https://doi.org/10.1155/2021/8836599.