DOI QR코드

DOI QR Code

Photoresponsive Hydrogels as Drug Delivery Systems

  • Abueva, Celine DG. (Beckman Laser Institute Korea, Dankook University College of Medicine) ;
  • Chung, Phil-Sang (Beckman Laser Institute Korea, Dankook University College of Medicine) ;
  • Ryu, Hyun-Seok (Beckman Laser Institute Korea, Dankook University College of Medicine) ;
  • Park, So-Young (Beckman Laser Institute Korea, Dankook University College of Medicine) ;
  • Woo, Seung Hoon (Beckman Laser Institute Korea, Dankook University College of Medicine)
  • Received : 2020.05.30
  • Accepted : 2020.06.04
  • Published : 2020.06.30

Abstract

Hydrogels have been developed and used in tissue engineering and regenerative medicine to deliver therapeutics to injured or diseased tissue because of their versatility and properties that can be tailored to match the natural extracellular matrix. Hydrogels can be made with a variety of physical and chemical properties combined with light responsiveness ideal for applications in different fields of medicine that require the spatiotemporal control of therapeutics. Light, as a stimulus, is relatively inexpensive, contact-free, noninvasive with high spatial resolution and temporal control, convenient and easy to use, and allows deep tissue penetration that is relatively harmless. Photoresponsive hydrogels are ideal candidates for on-demand drug delivery systems that are capable of sustained and controlled drug release, minimizing the side effects, and ensuring the activity and efficient delivery of drugs to the target tissue.

Keywords

Acknowledgement

We thank Beckman Laser Institute Korea in Dankook University for the support in completing this manuscript.

References

  1. Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 2017;18:316-30. https://doi.org/10.1021/acs.biomac.6b01604
  2. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24:4337-51. https://doi.org/10.1016/S0142-9612(03)00340-5
  3. Wang K, Hao Y, Wang Y, Chen J, Mao L, Deng Y, et al. Functional hydrogels and their application in drug delivery, biosensors, and tissue engineering. Int J Polym Sci 2019;2019:3160732.
  4. Chao Y, Chen Q, Liu Z. Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater 2020;30:1902785. https://doi.org/10.1002/adfm.201902785
  5. Fan DY, Tian Y, Liu ZJ. Injectable hydrogels for localized cancer therapy. Front Chem 2019;7:675. https://doi.org/10.3389/fchem.2019.00675
  6. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018;8:7533-49. https://doi.org/10.1039/C7RA13510F
  7. Mateus D, Marto J, Trindade P, Goncalves H, Salgado A, Machado P, et al. Improved morphine-loaded hydrogels for wound-related pain relief. Pharmaceutics 2019;11:76. https://doi.org/10.3390/pharmaceutics11020076
  8. Pena B, Laughter M, Jett S, Rowland TJ, Taylor MRG, Mestroni L, et al. Injectable hydrogels for cardiac tissue engineering. Macromol Biosci 2018;18:e1800079.
  9. Cai Z, Gan Y, Bao C, Wu W, Wang X, Zhang Z, et al. Photosensitive hydrogel creates favorable biologic niches to promote spinal cord injury repair. Adv Healthc Mater 2019;8:e1900013.
  10. Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 2011;63:1257-66. https://doi.org/10.1016/j.addr.2011.06.009
  11. Calo E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 2015;65:252-67. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  12. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules 2019;24:603. https://doi.org/10.3390/molecules24030603
  13. Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, et al. Recent progress in near infrared light triggered photodynamic therapy. Small 2017;13:1702299. https://doi.org/10.1002/smll.201702299
  14. Dou Q, Kenny Low ZW, Zhang K, Loh XJ. A new light triggered approach to develop a micro porous tough hydrogel. RSC Adv 2017;7:27449-53. https://doi.org/10.1039/C7RA03214E
  15. Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem Photobiol 2009;85:848-60. https://doi.org/10.1111/j.1751-1097.2008.00530.x
  16. Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 2012;64:1005-20. https://doi.org/10.1016/j.addr.2012.02.006
  17. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003. https://doi.org/10.1038/nmat3776
  18. Zhao H, Sterner ES, Coughlin EB, Theato P. o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 2012;45:1723-36. https://doi.org/10.1021/ma201924h
  19. Zhao X, Qi M, Liang S, Tian K, Zhou T, Jia X, et al. Sensitive amphiphilic copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and its micellization as leakage-free drug delivery system for UV-triggered intracellular delivery of doxorubicin. ACS Appl Mater Interfaces 2016;8:22127-34. https://doi.org/10.1021/acsami.6b08935
  20. Xin F, Wei M, Jiang S, Gao Y, Nie J, Wu Y, et al. Design of hydrophilic photocleavage o-nitrobenzyl acrylate-modified nanogels with outstanding biocompatibility prepared by RAFT polymerization for drug carrier. Eur Polym J 2020;122:109364. https://doi.org/10.1016/j.eurpolymj.2019.109364
  21. Wegner SV, Senturk OI, Spatz JP. Photocleavable linker for the patterning of bioactive molecules. Sci Rep 2015;5:18309. https://doi.org/10.1038/srep18309
  22. Griffin DR, Kasko AM. Photodegradable macromers and hydrogels for live cell encapsulation and release. J Am Chem Soc 2012;134:13103-7. https://doi.org/10.1021/ja305280w
  23. Li L, Scheiger JM, Levkin PA. Design and applications of photo-responsive hydrogels. Adv Mater 2019;31:e1807333.
  24. Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci U S A 2018;115:501-6. https://doi.org/10.1073/pnas.1714421115
  25. Yan B, Boyer JC, Habault D, Branda NR, Zhao Y. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc 2012;134:16558-61. https://doi.org/10.1021/ja308876j
  26. Hamblin MR. Upconversion in photodynamic therapy: plumbing the depths. Dalton Trans 2018;47:8571-80. https://doi.org/10.1039/c8dt00087e
  27. Lee SY, Lee R, Kim E, Lee S, Park YI. Near-infrared light-triggered photodynamic therapy and apoptosis using upconversion nanoparticles with dual photosensitizers. Front Bioeng Biotechnol 2020;8:275. https://doi.org/10.3389/fbioe.2020.00275
  28. Nino M, Calabro G, Santoianni P. Topical delivery of active principles: the field of dermatological research. Dermatol Online J 2010;16:4.
  29. Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM. Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med 2014;46:249-62. https://doi.org/10.1002/lsm.22227
  30. Leo Goo B. Laser assisted drug and cosmeceutical delivery system of the skin. Med Lasers 2015;4:51-9. https://doi.org/10.25289/ml.2015.4.2.51
  31. Kim JE, Kim JK, Ko JY, Ro YS, Chang SE. Topical application of whitening agents after erbium-doped yttrium aluminum garnet fractional laser treatment for melasma in Asians: a randomized controlled split-face study. Med Lasers 2012;1:3-10. https://doi.org/10.25289/ML.2012.1.1.3
  32. Hansen MJ, Velema WA, Lerch MM, Szymanski W, Feringa BL. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem Soc Rev 2015;44:3358-77. https://doi.org/10.1039/C5CS00118H
  33. Bao C, Fan G, Lin Q, Li B, Cheng S, Huang Q, et al. Styryl conjugated coumarin caged alcohol: efficient photorelease by either one-photon long wavelength or two-photon NIR excitation. Org Lett 2012;14:572-5. https://doi.org/10.1021/ol203188h
  34. Ji W, Qin M, Feng C. Photoresponsive coumarin-based supramolecular hydrogel for controllable dye release. Macromol Chem Phys 2018;219:1700398. https://doi.org/10.1002/macp.201700398
  35. Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed Engl 2010;49:7461-4. https://doi.org/10.1002/anie.201003567
  36. Aburaya Y, Nomura H, Kageshima M, Naitoh Y, Li YJ Sugawara Y. Switching surface polarization of atomic force microscopy probe utilizing photoisomerization of photochromic molecules. J Appl Phys 2011;109:064308. https://doi.org/10.1063/1.3552926
  37. Wang X, Wang C, Zhang Q, Cheng Y. Near infrared light-responsive and injectable supramolecular hydrogels for ondemand drug delivery. Chem Commun (Camb) 2016;52:978-81. https://doi.org/10.1039/c5cc08391e
  38. GhavamiNejad A, SamariKhalaj M, Aguilar LE, Park CH, Kim CS. pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy. Sci Rep 2016;6:33594. https://doi.org/10.1038/srep33594
  39. Yang Y, Liu J, Sun X, Feng L, Zhu W, Liu Z, et al. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res 2016;9:139-48. https://doi.org/10.1007/s12274-015-0898-4