Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.1.087

FA/Mel@ZnO nanoparticles as drug self-delivery systems for RPE protection against oxidative stress  

Yi, Caixia (School of Sports and Health Science, Tongren University)
Yu, Zhihai (Department of Urology, Chongqing University Three Gorges Hospital)
Sun, Xin (School of Sports and Health Science, Tongren University)
Zheng, Xi (School of Sports and Health Science, Tongren University)
Yang, Shuangya (School of Sports and Health Science, Tongren University)
Liu, Hengchuan (Department of Urology, Chongqing University Three Gorges Hospital)
Song, Yi (Department of Neurosurgery, Chongqing University Three Gorges Hospital)
Huang, Xiao (School of Sports and Health Science, Tongren University)
Publication Information
Advances in nano research / v.13, no.1, 2022 , pp. 87-96 More about this Journal
Abstract
Drug self-delivery systems can easily realize combination drug therapy and avoid carrier-induced toxicity and immunogenicity because they do not need non-therapeutic carrier materials. So, designing appropriate drug self-delivery systems for specific diseases can settle most of the problems existing in traditional drug delivery systems. Retinal pigment epithelium is very important for the homeostasis of retina. However, it is vulnerable to oxidative damage and difficult to repair. Worse still, the antioxidants can hardly reach the retina by non-invasive administration routes due to the ocular barriers. Herein, the targeted group (folic acid) and antioxidant (melatonin) have been grafted on the surface of ZnO quantum dots to fabricate a new kind of drug self-delivery systems as a protectant via eyedrops. In this study, the negative nanoparticles with size ranging in 4~6 nm were successfully synthesized. They could easily and precisely deliver drugs to retinal pigment epithelium via eyedrops. And they realized acid degradation to controlled release of melatonin and zinc in retinal pigment epithelium cells. Consequently, the structure of retinal pigment epithelium cells were stabilized according to the expression of ZO-1 and β-catenin. Moreover, the antioxidant capacity of retinal pigment epithelium were enhanced both in health mice and photic injury mice. Therefore, such new drug self-delivery systems have great potential both in prevention and treatment of oxidative damage induced retinal diseases.
Keywords
antioxidation; combination drug therapy; drug self-delivery system; retinal pigment epithelium; zinc oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alvarez-Barrios, A., Alvarez, L., Garcia, M., Artime, E., Pereiro, R. and Gonzalez-lglesias, H. (2021), "Antioxidant defenses in the human eye: A focus on metallothioneins", Antioxidants, 10(1), 89. https://doi.org/10.3390/antiox10010089.   DOI
2 Chang, C.C., Huang, T.Y., Chen, H.Y., Huang, T.C., Lin, L.C, Chang, Y.J. and Hsia S.M. (2018), "Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells", Oxid. Med. Cell. Longev., 2018, 9015765. https://doi.org/10.1155/2018/9015765.   DOI
3 Ahmed, T.A., Alzahrani, M.M., Sirwi, A. and Alhakamy, N.A. (2021), "Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing transethosomes nanoparticles", Pharmaceutics, 13(2), 151. https://doi.org/10.3390/pharmaceutics13020151.   DOI
4 Yang, X., Wang, L., Li, L., Han, M., Tang, S., Wang, T., Han, J., He, X., He, X., Wang, A. and Sun, K. (2019), "A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment", Drug Deliv., 26(1), 989-1001. https://doi.org/10.1080/10717544.2019.1667455.   DOI
5 Zhao, Y., Gao, J., Zhang, Y., Gan, X. and Yu, H. (2021), "Cyclosporine a promotes bone remodeling in LPS-related inflammation via inhibiting ROS/ERK signaling: Studies In vivo and in vitro", Oxid. Med. Cell. Longev., 8836599. https://doi.org/10.1155/2021/8836599.   DOI
6 Kim, J., Cho, K. and Choung, S.Y. (2020), "Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina", Free Radical Bio. Med., 152, 622-631. https://doi.org/10.1016/j.freeradbiomed.2019.12.003.   DOI
7 Rodriguez-Menendez, S., Garcia, M., Fernandez, B., Alvarez, L., Fernandez-Vega-Cueto, A., Coca-Prados, M., Pereiro, R. and Gonzalez-lglesias H. (2018), "The zinc-metallothionein redox system reduces oxidative stress in retinal pigment epithelial cells", Nutrients, 10(12), 1874. https://doi.org/10.3390/nu10121874.   DOI
8 Zhao, L.P., Zheng, R.R., Huang, J.Q., Chen, X.Y., Deng, F.A., Liu, Y.B., Huang, C.Y., Yu, X.Y., Cheng, H. and Li, S.Y. (2020), "Self-delivery photo-immune stimulators for photo-dynamic sensitized tumor immunotherapy", ACS Nano, 14(12), 17100-17113. https://doi.org/10.1021/acsnano.0c06765.   DOI
9 Huang, X., Yi, C., Fan, Y., Zhang, Y., Zhao, L., Liang, Z. and Pan, J. (2014), "Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded beta-cyclodextrin potential for ovarian cancer dual-targeting therapy", Mater. Sci. Eng. C, 42, 325-332. https://doi.org/10.1016/j.msec.2014.05.041.   DOI
10 Ilinskaya, A.N., Clogston, J.D., McNeil, S.E. and Dobrovolskaia M.A. (2015), "Induction of oxidative stress by Taxol (R) vehicle Cremophor-EL triggers production of interleukin-8 by peripheral blood mononuclear cells through the mechanism not requiring de novo synthesis of mRNA", Nanomed. Nanotechnol., 11(8), 1925-1938. https://doi.org/10.1016/j.nano.2015.07.012.   DOI
11 Horibe, Y., Hosoya, K., Kim, K.J., Ogiso, T. and Lee, V.H.L. (1997), "Polar solute transport across the pigmented rabbit conjunctiva: Size dependence and the influence of 8-bromo cyclic adenosine monophosphate", Pharm. Res., 14(9), 1246-1251. https://doi.org/10.1023/A:1012123411343.   DOI
12 Eixenberger, J.E., Anders, C.B., Wada, K., Reddy, K.M., Brown, R.J., Moreno-Ramirez J., Weltner, A.E., Karthik, C., Tenne, D.A. and Fologea, D. (2019), "Defect engineering of ZnO nanoparticles for bioimaging applications", ACS Appl. Mater. Inter., 11(28), 24933-24944. https://doi.org/10.1021/acsami.9b01582.   DOI
13 Sekine, H. and Motohashi, H. (2021), "Roles of CNC transcription factors NRF1 and NRF2 in cancer", Cancers, 13(3), 541. https://doi.org/10.3390/cancers13030541.   DOI
14 Song, H., Zheng, J., He, W., Wang, P. and Wang, F. (2019), "Activation of cofilin increases intestinal permeability via depolymerization of F-actin during hypoxia in vitro", Front. Physiol., 10, 1455. https://doi.org/10.3389/fphys.2019.01455.   DOI
15 Tambe, V., Raval, N., Gondaliya, P., Bhattacharya, P., Kalia, K. and Tekade, R.K. (2021), "To investigate fit-to-purpose nanocarrier for non-invasive drug delivery to posterior segment of eye", J. Drug Deliv. Sci. Tec., 61, 102222. https://doi.org/10.1016/j.jddst.2020.102222.   DOI
16 Warsi, M.H. (2021), "Development and optimization of vitamin E TPGS based PLGA nanoparticles for improved and safe ocular delivery of ketorolac", J. Drug Deliv. Sci. Tec., 61, 102121. https://doi.org/10.1016/j.jddst.2020.102121.   DOI
17 Baumal, C.R., Spaide, R.F., Vajzovic, L., Freund, K.B., Walter, S.D., John, V., Rich, R., Chaudhry, N, Lakhanpal, R.R and Oellers, P.R. (2020), "Retinal vasculitis and intraocular inflammation after intravitreal injection of brolucizumab", Ophthalmology, 127(10), 1345-1359. https://doi.org/10.1016/j.ophtha.2020.04.017.   DOI
18 Bourassa, P. and Tajmir-Riahi, H.A. (2015), "Folic acid binds DNA and RNA at different locations", Int. J. Biol. Macromol., 74, 337-342. https://doi.org/10.1016/j.ijbiomac.2014.12.007.   DOI
19 Dubashynskaya, N.V., Golovkin, A.S., Kudryavtsev, I.V., Prikhodko, S.S., Trulioff, A.S., Bokatyi, A.N., Poshina, D.N., Raik, S.V. and Skorik, V.A. (2020), "Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone", Int. J. Biol. Macromol., 158, 811-818. https://doi.org/10.1016/j.ijbiomac.2020.04.251.   DOI
20 Ge, Y., Zhang, A., Sun, R., Xu, J., Yin, T., He, H., Gou, J., Kong, J., Zhang, Y. and Tang, X. (2020), "Penetratin modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration", Expert Opin. Drug Del., 17(4), 603-619. https://doi.org/10.1080/17425247.2020.1735348.   DOI
21 Said, M., Aboelwafa, A.A., Elshafeey, A.H. and Elsayed, I. (2021), "Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole", J. Drug Deliv. Sci. Tec., 61, 102075. https://doi.org/10.1016/10.1016/j.jddst.2020.102075.   DOI
22 Huang, X., Wang, W., Zheng, X., Zhang, X. and Wang, Z. (2020), "Magnesium trisilicate coated Fe3O4 nanoparticles as prompt and efficient lactic acid removers potential for exercise-induce fatigue prevention", J. Biomed. Nanotechnol., 16(4), 531-537. https://doi.org/10.1166/jbn.2020.2903.   DOI
23 Dieguez, H.H., Fleitas, M.F.G., Aranda, M.L., Calanni, J.S., Sarmiento, M.I.K., Chianelli M.S., Alaimo, A., Sande, P.H., Romeo, H.E. Rosenstein, R.E. and Dorfman, D. (2020), "Melatonin protects the retina from experimental nonexudative age-related macular degeneration in mice", J. Pineal Res., 68(4), e12643. https://doi.org/10.1111/jpi.12643.   DOI
24 Subrizi, A, del Amo, E.M., Korzhikov-Vlakh, V., Tennikova, T., Ruponen, M. and Urtti, A. (2019), "Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties", Drug Discov. Today, 24(8), 1446-1457. https://doi.org/10.1016/j.drudis.2019.02.001   DOI
25 Suen, W.L.L. and Chau, Y. (2013), "Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity", J. Control. Release, 167 (1), 21-28. https://doi.org/10.1016/j.jconrel.2013.01.004.   DOI
26 Uthaiwat, P., Priprem, A., Puthongking, P., Daduang, J., Nukulkit, C., Chio-Srichan, S., Boonsiri, P. and Thapphasaraphong, S. (2021), "Characteristic evaluation of gel formulation containing niosomes of melatonin or its derivative and mucoadhesive properties using ATR-FTIR spectroscopy", Polymers, 13(7), 1142. https://doi.org/10.3390/polym13071142.   DOI
27 Wang, R., Gao, Y., Liu, A. and Zhai, G. (2021), "A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances", J. Drug Target., 29(7), 687-702. https://doi.org/10.1080/1061186X.2021.1878366.   DOI
28 Wilhelm, S., Tavares, A.J., Dai, Q., Qhta, S., Audet, J., Dvorak, H.F. and Chan, W.C.W. (2016), "Analysis of nanoparticle delivery to tumours", Nat. Rev. Mater., 1(5), 16014. https://doi.org/10.1038/natrevmats.2016.14.   DOI
29 Yadav, M., Schiavone, N., Guzman-Aranguez, A., Giansanti, F., Papucci, L., de Lara, M.J.P., Singh, M. and Kaur, I.P. (2020), "Atorvastatin-loaded solid lipid nanoparticles as eye drops: proposed treatment option for age-related macular degeneration (AMD)", Drug Deliv. Transl. Res., 10(4), 919-944. https://doi.org/10.1007/s13346-020-00733-4.   DOI
30 Yu, K., Liu, M., Dai, H. and Huang, X. (2020), "Targeted drug delivery systems for bladder cancer therapy", J. Drug Deliv. Sci. Tech., 56, 101535. https://doi.org/10.1016/j.jddst.2020.101535.   DOI
31 Shen, J., Wolfram, J., Ferrari, M. and Shen, H. (2017), "Taking the vehicle out of drug delivery", Mater. Today, 20(3), 95-97. https://doi.org/10.1016/j.mattod.2017.01.013.   DOI
32 Li, J., Cheng, T., Tian, Q., Cheng, Y., Zhao, L., Zhang, X. and Qu, Y. (2019), "A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye", Drug Deliv., 26(1), 188-198. https://doi.org/10.1080/10717544.2019.1571122.   DOI
33 Liu, X., Jiang, J. and Meng, H. (2019), "Transcytosis-An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery", Theranostics, 9(26), 8018-8025. https://doi.org/10.7150/thno.38587.   DOI
34 Huang, X., Chen, C., Zhu, X., Zheng, X., Li, S., Gong, X., Xiao, Z., Jiang, N., Yu, C. and Yi, C. (2019), "Transdermal BQ-788/EA@ZnO quantum dots as targeting and smart tyrosinase inhibitors in melanocytes", Mater. Sci. Eng. C, 102, 45-52. https://doi.org/10.1016/j.msec.2019.04.042.   DOI
35 Huang, X., Zheng, X., Xu, Z. and Yi, C. (2017), "ZnO-based nanocarriers for drug delivery application: From passive to smart strategies", Int. J. Pharm., 534(1-2), 190-194. https://doi.org/10.1016/j.ijpharm.2017.10.008.   DOI
36 Lajunen, T., Hisazumi, K., Kanazawa, T., Okada, H., Seta, Y., Yliperttula, M., Urtti, A. and Takashima, Y. (2014), "Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes", Eur. J. Pharm. Sci., 62, 23-32. https://doi.org/10.1016/j.ejps.2014.04.018.   DOI
37 Liu, Y., Zeng, F., Sun, B. and Jia, P. (2020), "Research on XRD and FTIR spectra of fly ash in different particle size from Gujiao power plant", Spectrosc. Spect. Anal., 40(5), 1452-1456. https://doi.org/10.3964/j.issn.1000-0593(2020)05-1452-05.   DOI
38 Mohsen, A.M., Salama, A. and Kassem, A.A. (2020), "Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation", J. Drug Deliv. Sci. Tec., 59, 101910. https://doi.org/10.1016/j.jddst.2020.101910.   DOI
39 Qin, S.Y., Zhang, A.Q., Cheng, S.X., Rong, L. and Zhang, X.Z. (2017), "Drug self-delivery systems for cancer therapy", Biomaterials, 112, 234-247. https://doi.org/10.1016/j.biomaterials.2016.10.016.   DOI
40 Rzhanova, L.A., Kuznetsova, A.V. and Aleksandrova, M.A. (2020), "Reprogramming of differentiated mammalian and human retinal pigment epithelium: current achievements and prospects", Russ. J. Dev. Biol., 51(4), 212-230. https://doi.org/10.1134/S1062360420040062.   DOI
41 Singh, T.A., Das, J. and Sil, P.C. (2020), "Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks", Adv. Colloid Interfac., 286, 102317. https://doi.org/10.1016/j.cis.2020.102317.   DOI
42 Saito, Y., Kuse, Y., Inoue, Y., Nakamura, S., Hara, H. and Shimazawa, M. (2018), "Transient acceleration of autophagic degradation by pharmacological Nrf2 activation is important for retinal pigment epithelium cell survival", Redox Biol., 19, 354-363. https://doi.org/10.1016/j.redox.2018.09.004.   DOI
43 Rehman A.U., Abbas, S.M., Ammad, H.M., Badshah, A., Ali, Z. and Anjum, D.H. (2013), "A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion", Mater. Lett., 108, 253-256. https://doi.org/10.1016/j.matlet.2013.07.009.   DOI
44 Mehrzadi, S., Hemati, K., Reiter, R.J. and Hosseinzadeh, A. (2020), "Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment", Expert Opi. Ther. Tar., 24(4), 359-378. https://doi.org/10.1080/14728222.2020.1737015.   DOI
45 Mu, W., Chu, Q., Liu, Y. and Zhang, N. (2020), "A review on nano-based drug delivery system for cancer chemoimmunotherapy", Nano-Micro Lett., 12(1), 142. https://doi.org/10.1007/s40820-020-00482-6.   DOI
46 Piscatelli, J.A., Ban, J., Lucas, A.T. and Zamboni, W.C. (2021), "Complex factors and challenges that affect the pharmacology, safety and efficacy of nanocarrier drug delivery systems", Pharmaceutics, 13(1), 114. https://doi.org/10.3390/pharmaceutics13010114.   DOI
47 Mao, L., Yang, J., Yue, J., Chen, Y., Zhou, H., Fan, D., Zhang, Q., Buraschi, S., Iozzo, R.V. and Bi, X. (2021), "Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis", Matrix Biol., 95, 1-14. https://doi.org/10.1016/j.matbio.2020.10.001.   DOI