• Title/Summary/Keyword: Control rule table

Search Result 51, Processing Time 0.033 seconds

Gate CD Control for memory Chip using Total Process Proximity Based Correction Method

  • Nam, Byung--Ho;Lee, Hyung-J.
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.180-184
    • /
    • 2002
  • In this study, we investigated mask errors, photo errors with attenuated phase shift mask and off-axis illumination, and etch errors in dry etch conditions. We propose that total process proximity correction (TPPC), a concept merging every process step error correction, is essential in a lithography process when minimum critical dimension (CD) is smaller than the wavelength of radiation. A correction rule table was experimentally obtained applying TPPC concept. Process capability of controlling gate CD in DRAM fabrication should be improved by this method.

Design of Vectored Sum Defuzzification Based Fuzzy Logic System for Hovering Control of Quad-Copter

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.318-322
    • /
    • 2016
  • A quad-copter or quad rotor system is an unmanned flying machine having four engines, which their thrust force is produced by four propellers. Its stable control is very important and has widely been studied. It is a typical example of a nonlinear system. So, it is difficult to get a desired control performance by conventional control algorithms. In this paper, we propose the design of a vectored sum defuzzification based fuzzy logic system for the hovering control of a quad-copter. We first summarize its dynamics and introduce a vectored sum defuzzification scheme. And then we design a vectored sum defuzzification based fuzzy logic system. for the hovering control of the quad-copter. Finally, in order to check the feasibility of the proposed system we present some simulation examples.

Positioning Recognition and Speed Control of Moving Robot at Indoor (실내 이동 로봇의 위치 인식 및 속도 제어에 관한 연구)

  • Shin, Wee-Jae;Jeong, Rae-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.88-91
    • /
    • 2010
  • In this paper, We are composed the position recognition and speed control using the moving robot in the shield Room with a RF Module and Ultrasonic Sensors. Double look up tables are selected a reference value/duty ratio. The moving robot with the dual fuzzy rules which can decrease a Conversion time than basic fuzzy control rules at start point and curve region. Also, a changing times of double look up table are rise at specific points b1,c1,d1 in the e-${\Delta}e$ phase plane and the one of the look up table is used which for increase rising time at transition area, the other used for rapidly conversion to the reference value. We verified that a dual fuzzy control rules get the good response compare with the basic fuzzy control rule.

Fuzzy control system tuning by performance evaluation (성능평가에 의한 퍼지제어시스템 동조)

  • Jeong, Heon;Jeong, Chang-Gyu;Ko, Nack-Yong;Kim, Young-Dong;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.682-684
    • /
    • 1995
  • The most effective way to improve the performance of a fuzzy controller may be to optimize look-up values. Look-up values are derived from processes used input-output scale factors, membership functions, rule base, fuzzy inference method and defuzzification. It is powerful way to modify or organize look-up table values. In this paper, We propose the look-up values self-organizing fuzzy controller(LSOFC). We use the plus-minus tuning method(PMTM), scanning values through the processes of addition and subtraction. We show the efficiency of this LSOFC by the results of simulation for nonlinear time-varying plant with unmodelled dynamics.

  • PDF

Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum (2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구)

  • 서강면;강문성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Study of the Wheelchair controlled by Joystick and Voices (조이스틱제어 및 음성으로 제어되는 휠체어의 연구)

  • Min, Hea-Jung;Yoon, Hung-Ri
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.723-726
    • /
    • 1988
  • This paper is a study about the automatic control of wheelchairs. This is realized by joystick, and is simulated by voice signal recognition. The control system by joystick is designed as follows: joystick paddle is connected with a timer and this timer ouput is high only when the joystick is moved. A computer reads the duration of this high state, and ouputs motor control word decided from this value using look-up table. The control system by voice signal is designed as follows: partial autocorrelation coefficients are computed from A/D converted signals and these values are compared with referance patterns. From this, the motor control word is decided on by the neareast neighbor rule.

  • PDF

ON LEARNING OF CNAC FOR MANIPULATOR CONTROL

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.653-662
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d.o.f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process. A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

Fuzzy Scheduling for the PID Gain Tuning (PID 이득 동조를 위한 퍼지 스케줄링)

  • Shin Wee-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.120-125
    • /
    • 2005
  • In this paper, We propose the fuzzy controller for the gain tuning of PID controller The proposed controller doesn't use the crisp output error and rule tables though with a fuzzy inference process in forward fuzzifier, New Fuzzy PID Controller assigns relations and ranges of two variables of PID gain parameters. These new gain parameters are calculated by the fuzzy inference with max-min ranges of Kp and Kd. The Ki parameter is computed automatically between Kp and Kd parameter Is calculated by Ziegler-Nickels tuning rules. Finally we experimented the propose controller by the hydraulic servo motor control system. We can obtained desired results through the good control characteristics.

Fuzzy Logic Controller Design for Tracking Control and Obstacle Avoidance of Mobile Robot (이동로봇의 추적제어 및 장애물 회피를 위한 퍼지제어기의 설계)

  • Park, Jong-Suk;Kim, Byung-Kook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.105-108
    • /
    • 1997
  • We developed a FLC(Fuzzy Logic Controller) for tracking control of MR(Mobile Robot) with obstacle avoidance. In this research, we made a heuristic approach to tracking control which is simple and efficient in almost every situation using FLC. In addition, smooth turn is accomplished and also obstacles are avoided. Also we used the XX(don't care) linguistic variable for inputs in FLC to make simple rule-table. With various simulations, the validity of our FLC was shown.

  • PDF