• 제목/요약/키워드: Control of distortion factor

검색결과 141건 처리시간 0.029초

장면 전환을 고려한 효과적인 전송률 제어 알고리즘 (An Efficient Bit Allocation Scheme Considering Scene Change)

  • 이우용;나종범
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1995년도 학술대회
    • /
    • pp.109-112
    • /
    • 1995
  • A rate control strategy in the MPEG is critical to the quality of the reconstructed image sequence. In this paper, were propose a rate control algorithm which can improve the coding performance for a given bit constraint. The proposed algorithm use the distortion-rate curve for the fine adjustment of the quantization scaling factor of each region. This algorithm can also handle the problem due to scene change effectively. It can be easily applicable to existing MPEG coders. Simulation results show that the performance for the algorithm is better than the rate control algorithm in the MPEG-2 TM5.

패널용 에어컨의 역률 개선 및 고조파 저감 (Power Factor Correction Improvement and Total Harmonic Distortion Reducing for Panel's Air-conditioner)

  • 박성우;박정우;이현우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.258-261
    • /
    • 2001
  • High Power factor Active Filter converter is used for Inverter Air conditioner power supply to meet IEC standard. In the active filter topology for power factor, extra switch just control the input current indirectly to meet the IEC standard for reducing the cost and size. In this paper, low cost converter was suggested by simulation using extra switch which auxiliary pulse is inserted and quasi resonant soft switching topology control is adapted for panel's inverter air conditioner converter Inserting auxiliary Pulse method to the extra switch has the benefit of reducing THD by low cost input control circuit. And also quasi resonant soft switching topology can reduce switching loss. So both technical is suitable for Panel's Air conditioner.

  • PDF

PWM 제어를 이용한 고역율, 저교조파형 고출력 Sepic 컨버터에 관한 연구 (A study on the high-power Sepic converter for high-power-factor, low current harmonics using PWM control)

  • 주형종;권명일;장도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1211-1213
    • /
    • 2003
  • A pulse width modulation(PWM) method for single-phase Sepic-type rectifier is introduced in this paper. The characteristics of the proposed PWM system are high performance high power factor with low input current harmonic distortion. The proposed control method is based on the average-current-mode using the dedicated integrated circuit UC3854 this technique it is possible to implement a very simple control circuit for unitary power-factor in CCM operation and also to provide over-current protection.

  • PDF

발전소 소내전력 고조파 및 역률 개선용 SVC 개발에 관한 연구 (A Study on Development of SVC to Improve Harmonics and Power Factor of Power Plant)

  • 윤광희;이희진
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2109-2118
    • /
    • 2011
  • The power system has to maintain its synchronism from transient disturbances and oscillations. To achieve this, the static var compensator(SVC), which is a flexible AC transmission system(FACTS), is applied to the power system. SVC using an advanced control algorithm improves the stability of power system. This paper is a study on design of SVC to improve harmonics and power factor of power plant. The proposed SVC analyzes harmonics, voltage drop and reactive power in real time. On the basis of the analysis of the data, the SVC using a switching control algorithm decreases harmonic signals and increases the power factor. The experimental results show that the proposed SVC enhances the stability of power system.

An Effective Control Scheme for Battery Charger System in Electric Vehicles

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.232-233
    • /
    • 2012
  • This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate at universal input voltage and attain a desired battery current and voltage without ripple. In order to achieve a unity input power factor and zero input current harmonic distortion, the proposed control scheme adopts duty ratio feed-forward control technique in both current and voltage control loop. Additionally, in the current loop, its reference is created by a phase-locked loop (PLL) block, leading to a pure sinusoidal input current although the input voltage waveform is being distorted. The feasibility and practical value of the proposed approach are verified by simulation and experiment with an 110V/60Hz ac line input and 1.5kW-72V dc output of the battery charging system.

  • PDF

직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법 (A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator)

  • 장훈;이우철;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템 (Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

고조파 왜곡 환경에서 향상된 역률 계측 알고리즘 개발 (Development of advanced Power Factor Computation Algorithm in Harmonics distorted Distribution System)

  • 이현우;박영균;이진한;정상현;박철우
    • 전자공학회논문지
    • /
    • 제53권7호
    • /
    • pp.121-127
    • /
    • 2016
  • 본 논문에서는 고조파로 전압과 전류가 왜곡된 상황에서 정확하게 기본파의 역률을 측정할 수 있는 방법을 제안한다. 제안한 역률 계측 방법에서는 전압과 전류를 DQ회전좌표계로 변환한 후 유효전력과 무효전력을 계산하여 역률값을 구하게 된다. 기존의 역률 계측방법과 제안한 방법을 수식적으로 비교하여 제시하고, 제안한 방법은 전압과 전류 모두 고조파 왜곡된 상황에서도 기본파의 역률을 정확하게 계측할 수 있는 것을 MATLAB을 이용한 모의실험에서 확인한다. 제안한 역률 계측방법을 자동역률제어장치에 적용할 경우 고조파 왜곡 환경에서 역률 보상 성능을 최대화 할 수 있다. 그 결과 수용가에서는 역률 개선을 통한 전기료 감소, 선로손실 감소, 부하 용량 증대 효과가 기대된다. 특히 발전 사업가 측에서는 역률 보상 성능의 향상으로 송전 여유 용량 확보와 발전량 절감이 가능하다.

Single-Phase Inverter for Grid-Connected and Intentional Islanding Operations in Electric Utility Systems

  • Lidozzi, Alessandro;Lo Calzo, Giovanni;Solero, Luca;Crescimbini, Fabio
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.704-716
    • /
    • 2016
  • Small distributed generation units are usually connected to the main electric grid through single-phase voltage source inverters. Grid operating conditions such as voltage and frequency are not constant and can fluctuate within the range values established by international standards. Furthermore, the requirements in terms of power factor correction, total harmonic distortion, and reliability are getting tighter day by day. As a result, the implementation of reliable and efficient control algorithms, which are able to adjust their control parameters in response to changeable grid operating conditions, is essential. This paper investigates the configuration topology and control algorithm of a single-phase inverter with the purpose of achieving high performance in terms of efficiency as well as total harmonic distortion of the output current. Accordingly, a Second Order Generalized Integrator with a suitable Phase Locked Loop (SOGI-PLL) is the basis of the proposed current and voltage regulation. Some practical issues related to the control algorithm are addressed, and a solution for the control architecture is proposed, based on resonant controllers that are continuously tuned on the basis of the actual grid frequency. Further, intentional islanding operation is investigated and a possible procedure for switching from grid-tied to islanding operation and vice-versa is proposed.

입력 전류의 측정이 필요없는 Boost 컨버터의 역률 보정에 관한 연구 (A Study On The Power Factor Correction Of The Boost Converter Without The Input Current Measurement)

  • 조상준;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.376-378
    • /
    • 1996
  • This paper presents a new PFC control method which replaces a fast line current measurement with a filtered load current measurement. Using the power balance relation between the input and the output of the boost converter. the input current can be described as the function of load current. Thus the PWM signal which effects the switching control of the boost converter is generated using the PFC input voltage, the PFC output voltage and the load current as input variables. By using a filter between the bridge rectifier and a dc-to-dc converter, the input voltage of the dc-to-dc converter is forced to always maintain above zero volt. Then the input current traces a sinewave in phase. The proposed scheme accomplishes a very high power factor and a low harmonic distortion of the line current. The validity of this scheme is demonstrated through simulation.

  • PDF