• 제목/요약/키워드: Contact geometry

검색결과 364건 처리시간 0.03초

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

기중 아크 차단에 대한 접점 및 소호 재료의 영향 (Influence of Contact and Wall Material on Arc Interruption in Air)

  • 이상엽;박홍태;오일성;이경행
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1637-1639
    • /
    • 2001
  • Air arc interruption used in low rated voltage breaker, ACB and MCCB, have used the arc chamber composed of metal plates and insulating laminates which supposed these mechanically. and geometry and materials of arc chamber are very different by breaker manufacturer. These breakers have required to be smaller and to interrupt higher current by user. therefore the arc chamber geometry and material in breaker have been small, complex and various. The purpose of this study is to examine the effects of insulating laminates and contact materials on air arc interruption. Contacts were surrounded by a rectangle chamber of insulating laminates. Contact concoctions were composed of AgW, AgCdO that have used in low rated voltage breaker, and insulating laminates were polyester, epoxy. We found strong dependance of arc voltage on insulating material. The ablated vapor on polyester increased arc voltage that was useful in air arc interruption.

  • PDF

보행 중 인체 슬관절의 3차원 접촉 모델 개발 (Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion)

  • 김효신;박성진;문정환
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

접촉면 형상에 따른 비접촉식 기계시일의 열거동 특성에 관한 유한요소해석 (Finite Element Analysis on the Thermal Behaviors of Non-Contact Type Mechanical Seals Depending on Contacting Face Geometry)

  • 조승현;김청균
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.34-41
    • /
    • 2002
  • This paper presents the contact thermal behaviors of mechanical seals depending on the contacting face geometry. Using the finite element analysis, the temperature distribution, thermal distortion and leakage have been analyzed as functions of sealing gap and rotating speed of the seal ring shaft. The FE results indicate that the inclined contacting face may be more effective and stable based on the results of thermal characteristic analysis if the seal ring has been designed with a same thermal capacity between conventional rectangular sealing faces and inclined seating surface of seal rings.

완전한 인볼류트 베벨기어쌍의 기구학적 고찰 및 형상 모형화 (Kinematical Investigation and Geometry Modeling of the Perfect Involute Bevel Gearsets)

  • Park, N.G.
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.46-56
    • /
    • 1995
  • As demands on the precision bevel gears are increased in the related industry, the exact kinematical investigations of a pair of spherical involute bevel gears are required for the computer aided design. The exact angular velocity ratio based on the characteristics of the spherical involute tooth is derived and verified from the relationship between rotational angles. Elementary kinematics of the gearsets is investigated by applying the transformation of the coordinate systems. The tooth contact lines based on logarithmic tooth-wise curve are examines in three dimentional space. Contact ratio is formulated and simulated according to the system parameters such as shaft angles, pressure angle, and spiral angles. The condition of teeth interference is dervied and the critical numbers of gear teeth are calculated. The whole surface geometry of a spiral bevel gearsets are discretized and visualized by a computer graphic tool.

  • PDF

슬루잉 링 베어링의 접촉응력분포에 관한 연구 (Analysis of Contact Stress in Slewing Ring Bearings)

  • 김청균;이승렬
    • Tribology and Lubricants
    • /
    • 제11권2호
    • /
    • pp.24-33
    • /
    • 1995
  • This paper presents the contact stress distributions between the multi-contact bodies and the total reaction forces for various types of contact geometry for multi-load slewing ring bearings. The FEM results indicate that the slope of the roller type of slewing ring bearing has slightly steeper than that of the ball type. This is because the roller type wire race bearings is stiffer than the ball type bearing. The total reaction force of ball type slewing bearing shows much higher than that of wire race slewing bearings.

세 물체 간 마찰 완전 접촉 문제의 응력 특이성 거동 (Stress Singularity Behaviour in the Frictional Complete Contact Problem of Three Bodies)

  • 김형규
    • Tribology and Lubricants
    • /
    • 제35권4호
    • /
    • pp.229-236
    • /
    • 2019
  • This study investigates the stress singularity that occurs at the contact edge of three bodies in a frictional complete contact. We use the asymptotic analysis method, wherein we constitute an eigenvalue problem and observe the eigenvalue behavior, which we use to obtain the order of the stress singularity. For the present geometry of three bodies in contact, a contact between a cracked indenter and half plane is considered. This is a typical geometry of the PCMI problem of a nuclear fuel rod. Thus, this paper, specifically presents the characteristics of the PCMI problem from the perspective of stress singularity. Consequently, it is noted that the behavior of the stress singularity varies with the difference in the crack angle, coefficient of friction, and material dissimilarity, as is observed in a frictional complete contact of two bodies. In addition, we find that the stress singularity changes essentially linearly with respect to the coefficient of friction, regardless of the variation in the crack angle and material dissimilarity. Concurrently, we find the order of singularity to be 0.5 at a certain coefficient of friction, irrespective of the crack angle, which we also observe in the crack problem of a homogeneous and isotropic body. The order of singularity can also exceed 0.5 in the frictional complete contact problem of three bodies. This implies that the propensity for failure when three bodies are in frictional complete contact can be even worse than that in case of a failure induced by a crack.

Neuro-Fuzzy를 이용한 GMA 용접의 비드형상 추론 알고리즘 개발 (Development of Inference Algorithm for Bead Geometry in GMAW using Neuro-Fuzzy)

  • 김면희;이종혁;이태영;이상룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.608-611
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) process, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWB (contact- tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using negro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks.

  • PDF

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.

Kurtosis를 고려한 3차원 거친 표면의 탄성 접촉 해석 (The Elastic Contact Analysis of 3D Rough Surface including the Kurtosis)

  • 김태완;강민호;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.34-41
    • /
    • 2000
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian distrubution. So, in this study, contact simulation are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface censidering the kurtosis is generated numerically, And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF