Browse > Article
http://dx.doi.org/10.1007/s40069-017-0194-7

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights  

Garcia, Victor J. (Universidad Tecnica Particular de Loja, UTPL)
Marquez, Carmen O. (Universidad Nacional de Chimborazo)
Zuniga-Suarez, Alonso R. (Universidad Tecnica Particular de Loja, UTPL)
Zuniga-Torres, Berenice C. (Universidad Tecnica Particular de Loja, UTPL)
Villalta-Granda, Luis J. (Universidad Tecnica Particular de Loja, UTPL)
Publication Information
International Journal of Concrete Structures and Materials / v.11, no.2, 2017 , pp. 343-363 More about this Journal
Abstract
The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.
Keywords
splitting test; Brazilian test; indirect tensile strength; tensile strength; concrete strength; splitting concrete;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mellor, M., & Hawkes, I. (1971). Measurement of tensile stregth by diametral compression of discs and snnuli. Engineering Geology, 5, 173-225. doi:10.1016/j.enggeo.2008.06.006.   DOI
2 Minitab Inc. (2009). Minitab statistical software. State College, PA, USA. Retrieved from www.minitab.com.
3 Carmona, S., & Aguado, A. (2012). New model for the indirect determination of the tensile stress-strain curve of concrete by means of the Brazilian test. Materials and Structures, 45, 1473-1485. doi:10.1617/s11527-012-9851-0.   DOI
4 Carneiro, F. L. L. B. (1943). A new method to determine the tensile strength of concrete. In 5th meeting of the Brazilian Association for Technical Rules, 3d. Section, (pp. 126-129). Associacao Brasileira de Normas Tecnicas-ABNT.
5 Carothers, S. D. (1920). The direct determination of stress. Proceedings of the Royal Society of London, 97(682), 110-123.   DOI
6 Chen, X., Ge, L., Zhou, J., & Wu, S. (2017). Dynamic Brazilian test of concrete using split Hopkinson pressure bar. Materials and Structures. doi:10.1617/s11527-016-0885-6.   DOI
7 Chen, X., Shao, Y., Chen, C., & Xu, L. (2016). Statistical analysis of dynamic splitting tensile strength of concrete using different types of jaws. Journal of Materials in Civil Engineering, 28(11), 4016117.   DOI
8 Chen, X., Wu, S., & Zhou, J. (2014). Quantification of dynamic tensile behavior of cement-based materials. Construction and Building Materials, 51, 15-23. doi:10.1016/j.conbuildmat.2013.10.039.   DOI
9 Erarslan, N., Liang, Z. Z., & Williams, D. J. (2012). Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mechanics and Rock Engineering, 45, 739-751. doi:10.1007/s00603-011-0205-y.   DOI
10 Frocht, M. M. (1947). Photoelasticity. New York: Wiley.
11 Nadai, A. (1927). Darstellung ebener Spannungszustande mit Hilfe von winkeltreuen Abbildungen. Zeitschrift fur Physik, 41(1), 48-50.   DOI
12 Zain, M. F. M., Mahmud, H. B., Ilham, A., & Faizal, M. (2002). Prediction of splitting tensile strength of high-performance concrete. Cement and Concrete Research, 32, 1251-1258. doi:10.1016/S0008-8846(02)00768-8.   DOI
13 Zhu, W. C., & Tang, C. A. (2006). Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences, 43, 236-252. doi:10.1016/j.ijrmms.2005.06.008.   DOI
14 Sadd, M. H. (2009). Elasticity theory, applications and numerics. New York: Elsevier Inc.
15 Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society, A221, 163.
16 Guo, H., Aziz, N. I., & Schmidt, L. C. (1993). Rock fracture-toughness determination by the Brazilian test. Engineering Geology, 33, 177-188. doi:10.1016/0013-7952(93)90056-I.   DOI
17 Murty, B. S. M., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2013). Nanoscience nanotechnology. In B. Raj (Ed.). New Delhi: Springer. doi:10.1007/978-3-642-28030-6.
18 Muskhelishvili, N. I. (1954). Some basic problems of the mathematical theory of elasticity: fundamental equations plane theory of elasticity torsion and bending. Springer-science Business Media, B. V. doi:10.1007/s13398-014-0173-7.2.
19 NBR. (2010). 7222 Concreto e argamassa - Determinacao da resistencia a tracao por compressao diametral de corpos de prova cilindricos. Rio de Janeiro: ASSOCIACAO BRASILEIRA DE NORMAS TECNICAS.
20 NCh. (1977). 1170: Of 77 Hormigon-Ensayo de traccion por hendimiento. Santiago de Chile: Instituto Nacional de Normalizacion.
21 Newman, J. B. (2003). Strength-testing machines for concrete. In J. B. Newman & B. S. Choo (Eds.), Advanced concrete technology set: Testing and quality. New York: Elsevier Butterworth Heinemann. doi:10.1016/b978-075065686-3/50265-2.
22 Hawkes, I., & Mellor, M. (1970). Uniaxial testing in rock mechanics laboratories. Engineering Geology, 4, 177-285.
23 Gutierrez Pulido, H., & Salazar, R. de la V. (2008). Analisis y diseno de experimentos. Igarss 2014 (2nd edn.). Mexico, DF.: McGraw-Hill Interamericana. doi:10.1007/s13398-014-0173-7.2.
24 Hanus, M. J., & Harris, A. T. (2013). Progress in Materials Science Nanotechnology innovations for the construction industry. Progress in Materials Science, 58(7), 1056-1102. doi:10.1016/j.pmatsci.2013.04.001.   DOI
25 Hashiba, K., & Fukui, K. (2015). Index of loading-rate dependency of rock strength. Rock Mechanics and Rock Engineering, 48(2), 859-865. doi:10.1007/s00603-014-0597-6.   DOI
26 Hertz, H. (1895). Gesammelte Werke (Collected Works). Leipzig.
27 Hondros, G. (1959). The evaluation of poisson's ratio and Young's modulus of materilas of a low tensile resistance by the Brazilian test. Australian Journal of Applied Science, 10(3), 243-268.
28 RILEM. (1994). CPC6 Tension splitting of concrete specimen. In technical recommendation for the testing and use of construction materials (pp. 21-22). London: RILEM.
29 NTE-INEN. (2011). 2380:2011 Cemento hidraulico. Requisitos de desempeno para cementos hidraulicos. Quito Ecuador: Instituto Ecuatoriano de Normalizacion.
30 Procopio, A. T., Zavaliangos, A., & Cunningham, J. C. (2003). Analysis of the diametrical compression test and the applicability to plastically deforming materials. Journal of Materials Science, 38, 3629-3639. doi:10.1023/A:1025681432260.   DOI
31 Satoh, Y. (1986). Position and load of failure by in Brazilian test: A numerical analysis by Griffith criterion. Journal of Materials Science, Japan, 140(36), 1219-1224.
32 Huang, Y. G., Wang, L. G., Lu, Y. L., Chen, J. R., & Zhang, J. H. (2014). Semi-analytical and numerical studies on the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-014-0676-8.   DOI
33 Hung, K. M., & Ma, C. C. (2003). Technical note: Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions. Experimental Mechanics, 43(2), 216-224. doi:10.1177/0014485103043002011.   DOI
34 IS. (1999). 5816:1999 splitting tensile strength of concrete method (1st revision, reaffirmed 2008). In CED 2: Cement and concrete. New Delhi: Bureau of Indian Standards.
35 Rocco, C., Guinea, G. V., Planas, J., & Elices, M. (2001). Review of the splitting-test standards from a fracture mechanics point of view. Cement and Concrete Research, 31, 73-82. doi:10.1016/S0008-8846(00)00425-7.   DOI
36 Roux, S. (1998). Quasi-static contacts. In H. J. Herrmann, J.-P. Hovi, & S. Luding (Eds.), Physics of dry granular media (pp. 267-284). Dordrecht: Kluwer Academic Publishers.
37 Sokolnikoff, L. S. (1956). Mathematical theory of elasticity. New York: McGraw-Hill.
38 Tang, T. (1994). Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens. Journal of Testing and Evaluation, 22(5), 401-409. doi:10.1520/JTE12656J.   DOI
39 ISRM. (2007). Suggested methods for determining tensile strength of rock materials. In R. Ulusay & J. A. Hudson (Eds.), The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006 (pp. 177-184). ISRM.
40 Japanese Industrial Standards. (1951). A-1113 Standard method of test for tensile strength of concrete.
41 Tarifa, M., Poveda, E., Yu, R. C., Zhang, X., & Ruiz, G. (2013). Effect of loading rate on high-strength concrete: Numerical simulations. In J. G. M. Van Mier, G. Ruiz, C. Andrade, R. C. Yu, & X. X. Zhabg (Eds.), FraMCoS-8 (pp. 953-963).
42 Timoshenko, S. (1924). The approximate solution of two dimensional problems in elasticity. Philosophical Magazine, 47, 1095-1104.   DOI
43 Timoshenko, S., & Goodier, J. N. (1951). Theory of elasticity. New York, PA: The Maple Press Company.
44 Timoshenko, S., & Goodier, J. N. (1969). Teoria de la elasticidad. Curso de fisica teorica. Elmsford: Pergamon Press.
45 UNE-EN. (2001). 12390-6 Ensayos de hormigon endurecido-Parte 6: Resistencia a traccion indirecta de probetas. Madrid Espana: Asociacion Espanola de Normalizacion y Certificacion.
46 Lavrov, A., Vervoort, A., Wevers, M., & Napier, J. A. L. (2002). Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. International Journal of Rock Mechanics and Mining Sciences, 39(3), 287-302. doi:10.1016/S1365-1609(02)00038-2.   DOI
47 Komurlu, E., & Kesimal, A. (2014). Evaluation of indirect tensile strength of rocks using different types of jaws. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-014-0644-3.   DOI
48 Kourkoulis, S. K., Markides, C. F., & Chatzistergos, P. E. (2013a). The standardized Brazilian disc test as a contact problem. International Journal of Rock Mechanics and Mining Sciences, 57, 132-141. doi:10.1016/j.ijrmms.2012.07.016.   DOI
49 Kourkoulis, S. K., Markides, C. F., & Hemsley, J. A. (2013b). Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test. Acta Mechanica, 224(2), 255-268. doi:10.1007/s00707-012-0756-3.   DOI
50 Le, H. T., Nguyen, S. T., & Ludwig, H.-M. (2014). A study on high performance fine-grained concrete containing rice husk ash. Concrete Structures and Materials, 8(4), 301-307. doi:10.1007/s40069-014-0078-z.   DOI
51 Li, D., & Wong, L. N. Y. (2013). The Brazilian disc test for rock mechanics applications: Review and new insights. Rock Mechanics and Rock Engineering, 46(2), 269-287. doi:10.1007/s00603-012-0257-7.   DOI
52 Love, A. E. H. (1927). Mathematical theory of elasticity (4th ed.). London: Cambridge University Press.
53 Awaji, H. (1977). Diametral compressive stress considering by the Hertzian contact. Journal of Materials Science, Japan, 27(295), 336-341.
54 Andreev, G. E. (1991). A review of the Brazilian test for rock tensile strength determination. Part II: Contact conditions. Mining Science and Technology, 13, 457-465. doi:10.1016/0167-9031(91)91035-G.   DOI
55 ASTM. (2003). C31/C 31M-03 Practica Normalizada para Preparacion y Curado de Especimenes de Ensayo de Concreto en la Obra. In Book of standards Vol. 04.02 concrete and aggregates. West Conshohocken, PA: ASTM International.
56 Vorel, J., Smilauer, V., & Bittnar, Z. (2012). Multiscale simulations of concrete mechanical tests. Journal of Computational and Applied Mathematics, 236, 4882-4892. doi:10.1016/j.cam.2012.01.009.   DOI
57 Wang, Q. Z., Jia, X. M., Kou, S. Q., Zhang, Z., & Lindqvist, P. A. (2004). The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. International Journal of Rock Mechanics and Mining Sciences, 41, 245-253. doi:10.1016/S1365-1609(03)00093-5.   DOI
58 ASTM. (2004). C496 Standard test method for splitting tensile strength of cylindrical concrete specimens. In Annual book of ASTM standards. West Conshohocken PA: ASTM International.
59 ASTM. (2008). D3697-08 Standard test method for splitting tensile strength of intact rock core specimens. In Annual book of ASTM standards. West Conshohocken PA: ASTM International.
60 ASTM. (2015). C1157/C1157M-11 Standard performance specification for hydraulic cement. In Book of standards Vol. 04.01 cement; lime; gypsum. West Conshohocken, PA: ASTM International.
61 Birgisson, B., Mukhopadhyay, A. K., Georgene, G., Khan, M., & Sobolev, K. (2012). Nanotechnology in concrete materials: A synopsis. Washington, DC. Retrieved from www.TRB.org.
62 BS. (1983). 1881-117 Testing concrete-Part 117. In Method for determination of tensile splitting strength. London: British Standards Institution.
63 Cai, M. (2013). Fracture initiation and propagation in a Brazilian disc with a plane interface: A numerical study. Rock Mechanics and Rock Engineering, 46(2), 289-302. doi:10.1007/s00603-012-0331-1.   DOI
64 Carmona, S. (2009). Efecto del tamano de la probeta y condiciones de carga en el ensayo de traccion indirecta. Materiales de Construccion, 59(294), 7-18. doi:10.3989/mc.2009.43307.   DOI
65 Yehia, S., Helal, K., Abusharkh, A., Zaher, A., & Istaitiyeh, H. (2015). Strength and durability evaluation of recycled aggregate concrete. International Journal of Concrete Structures and Materials, 9(2), 219-239. doi:10.1007/s40069-015-0100-0.   DOI
66 Wang, S. Y., Sloan, S. W., & Tang, C. A. (2014). Three-dimensional numerical investigations of the failure mechanism of a rock disc with a central or eccentric hole. Rock Mechanics and Rock Engineering, 47(6), 2117-2137. doi:10.1007/s00603-013-0512-6.   DOI
67 Wendner, R., Vorel, J., Smith, J., Hoover, C. G., Bazant, Z. P., & Cusatis, G. (2014). Characterization of concrete failure behavior: A comprehensive experimental database for the calibration and validation of concrete models. Materials and Structures. doi:10.1617/s11527-014-0426-0.   DOI
68 Wong, L. N. Y., & Jong, M. C. (2013). Water saturation effects on the Brazilian tensile strength of gypsum and assessment of cracking processes using high-speed video. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-013-0436-1.   DOI
69 Yoshiaki, S. (1980). Master Degree Desertation. Tokio University.
70 Yu, Y., Yin, J., & Zhong, Z. (2006). Shape effects in the Brazilian tensile strength test and a 3D FEM correction. International Journal of Rock Mechanics and Mining Sciences, 43, 623-627. doi:10.1016/j.ijrmms.2005.09.005.   DOI
71 Marguerre, K. (1933). Spannungsverteilung und Wellenausbreitung in der kontinuierlich gestutzten Platte. Ingenieur-Archiv, 4, 332-353.   DOI
72 Adams, G. G., & Nosonovsky, M. (2000). Contact modeling-forces. Tribology International, 33, 431-442. doi:10.1016/S0301-679X(00)00063-3.   DOI
73 Akazawa, T. (1943). New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part 1). Journal of Japanese Civil Engineering Institute, 29, 777-787.
74 Aliha, M. R. M. (2013). Indirect tensile test assessments for rock materials using 3-D disc-type specimens. Arabian Journal of Geosciences. doi:10.1007/s12517-013-1037-8.   DOI
75 MacGregor, C. W. (1933). The potential function method for the solution of two-dimensional stress problems. Transactions of the American Mathematical Society, 38(1935), 177-186.
76 Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials, 7(3), 239-249. doi:10.1007/s40069-013-0049-9.   DOI
77 Markides, C. F., & Kourkoulis, S. K. (2012). The stress field in a standardized Brazilian disc: The influence of the loading type acting on the actual contact length. Rock Mechanics and Rock Engineering, 45, 145-158. doi:10.1007/s00603-011-0201-2.   DOI
78 Markides, C. F., & Kourkoulis, S. K. (2013). Naturally accepted boundary conditions for the Brazilian disc test and the corresponding stress field. Rock Mechanics and Rock Engineering, 46, 959-980. doi:10.1007/s00603-012-0351-x.   DOI
79 McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61-69. doi:10.1007/s40069-013-0032-5.   DOI
80 Mehdinezhad, M. R., Nikbakht, H., & Nowruzi, S. (2013). Application of nanotechnology in construction industry. Journal of Basic and Applied Scientific Research, 3(8), 509-519.