• Title/Summary/Keyword: Contact Calculation

Search Result 291, Processing Time 0.03 seconds

Development of a Contact Angle Measurement Method Based Upon Geometry (기하학적 원리에 의거한 접촉각의 측정)

  • 김동수;표나영;서승희;최우진;권영식
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.41-45
    • /
    • 1998
  • A Hew way of contact angle measurement is derived based on simple geometrical calculation. Without using complicated contact angle measurement instrument. Just measuring the diameter and height of liquid lens made it possible to calculate the contact angle value with a reasonable reliability. To validate the contact angle value obtained by this method, contact angle of the same liquid lens is measured using conventional goniometer and it is verified that two values are nearly same within the limit of observational error.

  • PDF

Developement of the Wheel-Rail Contact Algorithm and Dynamic Analysis (휠-레일 접촉 알고리즘 개발 및 동역학 해석)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.963-969
    • /
    • 2010
  • The railway vehicle consists of wires, bodies, bogies and wheelsets, and each part has very complex mechanism. In this paper, wheel-rail contact algorithm is implemented using C++ and inserted into the ODYN which is a dynamic analysis program. To analyze wheel-rail contact mechanism, information such as contact points, contact angle and rolling radius is calculated according to the wheel and rail profile. Using this information, a table for the calculation of the wheel-rail contact analysis is made according to the lateral displacement. And, the creepage and normal force are calculated and a creep force is estimated by the FASTSIM. To verify the reliability of the wheel-rail contact algorithm, results of the program are compared with the ADAMS/Rail and paper. Finally, a wheelset of the railway vehicle is modeled using ODYN and simulated static and dynamic analysis. And, to verify the reliability of the simulation results, a displacement, velocity, acceleration and force are compared with results of ADAMS/Rail.

  • PDF

A Study of Dynamic Characteristic Analysis Algorithm for Running Safety Assessment (주행안전성 평가를 위한 동특성 해석알고리즘 연구)

  • Chung J.D.;Han S.Y.;Chun H.J.;Pyun J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.411-412
    • /
    • 2006
  • It is very difficult to analyze the dynamic characteristic because railway vehicle is a very complex system which are connected various mass element with railway vehicle system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel-rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

Contact point analysis for wheel/rail contact force calculation (휠/레일간의 접촉력 계산을 위한 접촉점 해석 알고리즘)

  • 박정훈;임진수;황요하;김창호
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.429-436
    • /
    • 1998
  • In this paper, we derive the algorithm for calculating contact point between wheel and rail and develop the method for track modeling. The proposed methods use travelling distance to represent track center line poistion vector and track orientation with respect to Newtonian reference frame. The proposed methods can be easily used in multibody dynamic analysis. Two numerical examples are given to verify the validity of the proposed methods.

  • PDF

Determination of Contact Area of Cylindrical Nanowire using MD Simulation (MD 시뮬레이션을 이용한 실린더 형태 나노와이어의 접촉면적에 관한 연구)

  • Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Contact between solid surfaces is one of the most important factors that influence dynamic behavior in micro/nanoscale. Although numerous theories and experimental results on contact behavior have been proposed, a thorough investigation for nanomaterials is still not available owing to technical difficulties. Therefore, molecular dynamics simulation was performed to investigate the contact behavior of nanomaterials, and the application of conventional contact theories to nanoscale was assessed in this work. Particularly, the contact characteristics of cylindrical nanowires were examined via simulation and contact theories. For theoretical analysis, various contact models were utilized and work of adhesion, Hamaker constant and elastic modulus those are required for calculation of the models were obtained from both indentation simulation and tensile simulation. The contact area of the cylindrical nanowire was assessed directly through molecular dynamics simulation and compared with the results obtained from the theories. Determination of the contact area of the nanowires was carried out via simulation by counting each atom, which is within the equilibrium length. The results of the simulation and theoretical calculations were compared, and it was estimated that the discrepancy in the results calculated between the simulation and the theories was less than 10 except in the case of the smallest nanowires. As the result, it was revealed that contact models can be effectively utilized to assess the contact area of nanomaterials.

Stress Analysis of Epitrochoidal Gerotor for Hydraulic Motor (유압 모터용 에피트로코이드 제로터의 응력해석)

  • Kim, Du-In;Choe, Dong-Hun;An, Hyo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.963-971
    • /
    • 2000
  • Gerotor is a planar mechanism consisting of a rotor and lobes which form a closed space, namely a chamber. As active contact points between a rotor and lobes are subjected to very high contact stresses, wear in one or both of the rotor and lobe cannot be avoided. Therefore, in the design of Gerotor used in hydraulic motors a compromise between high torque output and contact stress is of great importance and a thorough analysis of design parameters should be conducted to achieve this compromise. In this study, a contact point is modelled as a linear spring in consideration of equivalent curvature to analyze the contact stress. As the contact stress calculation in this problem is a statically indeterminate type, a numerical iterative scheme has been adopted to obtain the solution. To fully understand the influence of design parameters on the contact stress, the relationship between pressure force, equivalent curvature, contact force and contact stress are analyzed. It is shown that the equivalent curvature of the contact point is a dominant factor that affects the maximum contact stress.

Calculation of Contact Pressure to the Die of Axisymmetric Extrusion by Using Upper Bound Solution (축대칭 압출 공정에서 상계법을 이용한 금형 접족면압의 계산)

  • Choi Young;Yeo Hong-Tae;Hur Kwando
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.133-139
    • /
    • 2004
  • In general, the contact pressure to the die cannot be easily determined by using upper bound solution. Recently, the authors have proposed the method determining the contact pressure with the upper bound solution for the forming with the plane stain plastic deformation. In this paper, the method is applied to an axisymmetric forward extrusion process. The contact pressure to the die of the axisymmetric extrusion has been determined with the upper bound solution and compared with the result of rigid plastic FEM. The optimal semi-angles of die have been obtained minimizing the relative contact pressure to die fur the extrusion ratio.

Finite element generalized tooth contact analysis of double circular arc helical gears

  • Qu, Wentao;Peng, Xiongqi;Zhao, Ning;Guo, Hui
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • This paper investigates the load sharing of double circular arc helical gears considering the influence of assembly errors. Based on a load sharing formulae, a three-dimensional finite element tooth contact analysis (TCA) is implemented with commercial software package ANSYS. The finite element grid for the double circular arc gear contact model is automatically generated by using the APDL (ANSYS Parameter Design Language) embedded in ANSYS. The realistic rotation of gears is achieved by using a coupling degree-of-freedom method. Numerical simulations are carried out to exemplify the proposed approach. The distribution of contact stress and bending stress under specific loading conditions are computed and compared with those obtained from Hertz contact theory and empirical formulae to demonstrate the efficiency of the proposed load sharing calculation formulae and TCA approach.

A New Algorithm of Dynamic Characteristic Analysis for Running Safety of Tilting Vehicle (틸팅차량 주행안전성을 위한 동특성 해석 알고리즘에 관한 연구)

  • Chung Jong-Duk;Chun Hong-Jung;Kim Sun-Cheol;Han Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.131-139
    • /
    • 2005
  • It is very difficult to analyze the dynamic characteristic because tilting vehicle is a very complex system which are connected various mass element with tilting system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel -rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

Torsional Stiffness Analysis of a Cycloid Reducer using Hertz Contact Theory (Hertz 접촉이론을 이용한 사이클로이드 감속기의 비틀림 강성해석)

  • Lee S.Y.;Park J.S;Ahn H.J.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.816-821
    • /
    • 2005
  • The cycloid reducer has very high efficiency, high ratios, high stiffness and small size, in comparison with a conventional gear mechanism, which makes it an attractive candidate for limited space and precision application such as industrial robot. There are several publications on analysis and design of the cycloid reducer, however, it was assumed that the contact stiffness of pin rollers and cycloid disk is constant regardless of their contact geometry. Moreover, the torsional stiffness of the cycloid reducer couldn't be calculated due to the assumption. In this paper, we present a new procedure of calculating torsional stiffness of the cycloid reducer using Hertz contact theory. First, conventional force analysis of the cycloid reducer is briefly reviewed. Then, iterative numerical calculation procedure of the contact stiffness is proposed based on the Hertz contact theory where the contact stiffness depends on the contact force. In addition, total torsional stiffness of the cycloid reducer is estimated considering its rolling element bearing stiffness. The torsional stiffness of the cycloid reducer is dominated by the rolling element bearing stiffness since the contact stiffness of the cycloid disk is too large.

  • PDF