• Title/Summary/Keyword: Construction-step behavior

Search Result 91, Processing Time 0.032 seconds

Back Analysis of Tunnel for multi-step Construction (시공 단계를 고려한 터널의 역해석에 관한 연구)

  • 김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.479-484
    • /
    • 2000
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design tunnel safely and economically. Therefore, the back analysis using the field measurements data is useful to evaluate the geotechnical parameter for tunnel. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. In this paper, to overcome uncertainty of field measurements, we performed the back analysis using the displacement data gained at each step of excavation and support.

  • PDF

Analysis on Awareness of Construction Labors about Resolution Step of the Delayed Wage Payment (임금체불 해소절차에 대한 건설근로자 인식 분석)

  • Yang, Gi Nam;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.553-560
    • /
    • 2016
  • Wage is a very important issue not only for the workers' current living but also for the future laboring landscape. As of 2014, it is reported that about 290,000 workers suffer from delay in payment of wage. The construction industry is particularly labor-intensive, which implies that delay in payment of wage is a serious problem. Despite this fact, in terms of the delayed payment of wage most studies have been conducted on the improvement of a system to resolve delayed payment in exclusion of labor workers' awareness and thinking. Thus, the purpose of this study is to understand construction labor' awareness and analyze the effectiveness of the resolution step of the delayed payment of wage based on construction labors' awareness. In the research result, more than 30 percent of all construction labors and managers are never aware of the settlement procedure of the delayed payment, and it appears that the resolution step system needs to be greatly improved. In conclusion, it is expected that this study will be utilized as fundamental data for the settlement procedure of the delayed payment, and the influence of delayed payment on construction labors' safety behavior and productivity should be further studied in the future.

Study on Prediction of Drying Shrinkage Behavior of Half PC slab (Half PC 슬래브의 건조수축 거동 예측에 관한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • The use of half PC slab has been increasing to shorten construction period. Because the drying shrinkage of topping concrete is restrained by PC slab, the tensile stress is generated at the topping concrete and the cracks can be occurred at the topping concrete due to drying shrinkage. Therefore, it is important to predict the tensile strain of half PC slab due to drying shrinkage to improve the quality of half PC slab. However, there is no studies on prediction of shrinkage behavior of half PC slab yet. Therefore, in this study, half PC slab was made, and the predictability of tensile strain generated at half PC slab due to drying shrinkage was investigated. The step by step method considering creep was used to estimate the tensile strain of half PC slab. In result, good agreement was obtained between the analytical and experimental values.

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Construction of the reduced system by two-level scheme and time integration in the reduced system under arbitrary loading (2단계 축소기법에 의한 축소시스템의 구성과 동하중에 의한 구조물의 동적 거동에 관한 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.453-458
    • /
    • 2004
  • This study proposes a new two-level condensation scheme for the construction of a reduced system. In the first step, the candidate area is selected for the construction of the reduced system by energy estimation in element-level. In the second step, primary degrees of freedom are selected by sequential elimination from the candidate degrees of freedom linked to the selected elements. Numerical examples demonstrate that the proposed method saves the computational cost effectively and provides a reduced system which predicts the eigenvalues accurately. Moreover, the well-constructed reduced system can present the reliable behavior of the structure under arbitrary dynamic loads comparing to that of global system. Time integration in a reduced system can save the computing time remarkably. Through a few numerical examples, the efficiency and reliability of the proposed scheme are verified.

  • PDF

Analysis of Multi-Story Prestressed Concrete Structure Considering the Effect of Construction Stage (시공단계의 영향을 고려한 프리스트레스 콘크리트 다층 구조물의 해석)

  • Jeon, Chan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.213-223
    • /
    • 2001
  • This paper presents an analytical procedure for the time-dependent analysis of the multi-story prestressed concrete structure under the construction stage. To account for the actual structural behavior, the procedure considers the effects due to the construction interval and the time-dependent losses of prestress at every construction step on the entire structural response. A numerical study is performed to demonstrate the general validity of the approach and to quantitatively evaluate the effects resulted from the time-dependent behaviors during construction. Recommendations and conclusions are developed by comparisons with structural responses using the present and conventional methods of analysis. The comparative results show that both effects of sequential construction and time-dependent prestress losses should be considered for the construction stage analysis.

  • PDF

A Study on the Nonlinear Instability Behavior of Hybrid Structures(II) -Characteristic of Dynamic In-Plane Torsional Buckling under the STEP Load- (Hybrid 구조물의 비선형 불안정 거동에 관한 연구(II) -STEP 하중에서의 동적 면내비틀림 좌굴 특성-)

  • Kim, Seung Deog;Kim, Hyung Seok;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.599-608
    • /
    • 2001
  • Many papers which deal with the dynamic instability of shell-like structures under the STEP load has been published but there have been few papers related to the dynamic instability of hybrid cable domes. And also there are a few researches which treat the essential phenomenon of the dynamic buckling using the phase for investigating occurrence of chaos. In this study the indirect buckling of hybrid cable domes considering geometric nonlinearity are investigated numerically and compared it with the static critical load The dynamic critical loads are determined by the numerical integration of the geometric nonlinear equation of motion and the mechanism of the indirect buckling is examined by using the phase curves.

  • PDF

Real-Time Simulation of an Excavator Considering the Functional Valves of the MCV (MCV의 기능밸브를 고려한 굴삭기의 실시간 시뮬레이션)

  • Im, Yong-Hyeon;Lee, Sang-Wook;Cho, Min-Gi;Shin, Dae-Young;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.38-47
    • /
    • 2019
  • In this paper, a real-time simulation model of an excavator using Amesim was proposed, considered the operation of functional valves with the main control valve (MCV). The hydraulic system models including the pump and MCV have been developed. The kinematic and dynamic models of the manipulator have also been developed, to confirm the behavior of the excavator. The MCV model includes various functional valves such as the regenerative valves, holding valves, swing and boom priority valves, and regen-cut valves so that simulations similar to real excavators can be performed. Additionally, to obtain the real-time calculation performance, the parts with no major influence on the dynamic behavior were simplified, high frequency factors were removed, and parameters were optimized. The models were compared with each other through the numerical analysis with variable time-step and fixed time-step, and the results were verified by comparison with the results of the actual vehicle tests.

Analysis on the behavior of Stiffened Reinforcement within Reinforced earth retaining wall (보강토 옹벽 축조시 사용되는 보강재의 강성이 시공완료후 보강토 옹벽 구조체의 거동에 미치는 영향)

  • 박병영;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.1-11
    • /
    • 2001
  • This Paper presents the result of a parametric study on the behavior of stiffened grid reinforced segmental wall resting on non-yielding foundation. The parametric study was conducted using the nonlinear finite element analysis. In the finite element analysis, the step by step construction of the wall such as backfill, block reinforcement, block/backfill and soil/reinforcement interfaces were carefully modeled. The mechanical behavior of stiffened grid reinforced segmental walls was then investigated based on the result of analysis with emphasis on the effect of reinforcement stiffness on the behavior of the wall. The results of analysis indicate that the horizontal wall displacement decrease; with increasing the reinforcement stiffness at a decreasing rate, and that the horizontal stress at the back of the reinforced soil block does not much vary with the reinforcement stiffness. It is also revealed that the calculated maximum vertical stress at the base of the reinforced soil block agrees well with that based on the Meyerhof distribution and that the reinforcement and the connection force are considerably smaller than what might be expected based on the current design assumptions. The implications of the findings from this study to current design approaches were discussed in detail.

  • PDF

Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step (DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF