• Title/Summary/Keyword: Construction scheme

Search Result 840, Processing Time 0.023 seconds

A preliminary study on the optimum excavation sequence of a room-and-pillar underground structure (주방식 지하구조물의 최적 굴착공정에 대한 예비 분석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of galleries. As a result, its construction and economical efficiency can be governed by excavation sequence of galleries. Therefore, this study aims to study the optimum excavation scheme of a room-and-pillar underground structure by considering its various design factors such as ground conditions and excavation sequences. Drill-and-blast method is assumed as a excavation method for a room-and-pillar underground structure. In addition, two kinds of excavation patterns corresponding to a concurrent and a sequential excavation patterns are considered in this study. For the assumed conditions, the structural stability and the construction efficiency based on the number of faces and the travel distance of a jumbo drilling machine are analyzed for the two excavation patterns. Even though the two kinds of excavation patterns show almost the same structural stability as each other, the concurrent excavation pattern is relatively preferable to the sequential excavation pattern in terms of the number of faces in operation and travel distance of a drilling jumbo.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis (유한요소해석을 통한 해중터널의 유체동역학 해석)

  • Kim, Seungjun;Park, Woo-Sun;Won, Deok-Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.955-967
    • /
    • 2016
  • As transportation systems for connecting lands and islands, oversea long-span bridges, underwater tunnels, and immersed tunnels have been mainly used so far. Submerged floating tunnels (SFTs) moored under specific water depth are one of the newest oversea transportation system. Compared to other existing systems, the new system requires relatively less construction cost and time. But, there is still no construction example. For reasonable design of the tunnel and mooring lines the rational structural analysis should be firstly performed. Unlike common transportation structures, the submerged tunnels are mainly affected by the wave, vary irregular excitation component. So, the analysis scheme might be difficult because of the characteristics of the submerged structures. This study aims to suggest the rational global performance analysis methodology for the submerged tunnels. Using ABAQUS the dynamic response of the experimental models studied by KIOST (2013) was investigated considering regular waves. By comparing the simulation results with the experimental results, the feasibility of the numerical simulation was verified. Using the suggested method, the effects of initial inclination of the tethers and draft of the tunnel on the dynamic behavior were studied. In addition, dynamic response of a SFT under the irregular wave was examined.

Development of Gateway Review System for Supporting Collaborative Decision-Making through Project Life Cycle (사업 단계별 의사결정 지원 게이트웨이 리뷰 체계 구축)

  • Shin, Seung-Woo;Yi, June-Seong;Lee, Jee-Hee;Park, Kyung-Rog;Lim, Ji-Youn
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 2010
  • As Urban Regeneration is being carried out, stakeholders are most likely to have disagreements on their interests. Besides, dispersion of numerous communication routes and obscure decision processes aggravate the situation. Eventually, fragmented decision-making processes and complex structure lead to inefficient outcome and delay of projects. This paper is a study on decision-making support not only helps the program manager have more efficient and optimum decision, but also provides alternatives for Urban Regeneration. This study is conducted as follows. Firstly, the project process and the decision-making structure among stakeholders in Urban Regeneration are analyzed, and then the current status of decision-making in Urban Regeneration project is classified. Secondly, with literature study on "Gateway Review", the decision-making gateway review process in Urban Regeneration is defined, and then the "Gateway Review Elements" are listed. Thirdly, to establish gateway review process, this paper presents a check points, namely gate which supports a program manager to monitor and to control the program management in Urban Regeneration. Each gate has several supporting tools such as diagram of critical decision points relation, scheme of stakeholder, checklist. Fourthly, the proposed concept is verified by experts who have been carefully selected to provide their respective reviews. Finally, decision-making support gateway review system is modified based on their critiques and suggestions.

Key Risks and Success Factors on the China's Public-Private Partnerships Water Project (중국 수처리 민관협력사업 사례분석을 통한 시사점 도출: 위험 및 성공 요인 도출)

  • Choi, Jae-Ho;Lee, Seung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.134-144
    • /
    • 2010
  • In China, the enhancement of water services has become the most crucial issue confronted with the rapid urbanization and industrialization process. A huge financial gap to meet the demand for water infrastructure and need for adopting advanced operation technology precipitated the rapid growth of PPP over the last 10 years. Diverse schemes of PPP such as TOT, Divestiture, and Management Contract and Lease have been practiced. Local governments and private investors/operator have adjusted their objectives and strategies to avoid potential pitfalls behind BOT projects in China. However, current academic research outcomes do not properly reflect important issues of BOT projects or related case studies in China. This limitation has brought in the lack of assessment of important risks and success factors required for the improvement of the body of risk management. In this regard, this study uses the market analysis method to identify major schemes of PPP water projects and conducts case studies on five PPP projects to identify key risk and success factors in association with each different scheme. It is expected that the risk and success factors identified from the cases will be used as reference to Korean companies which plan to enter the Chinese water market.

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF

Development of Decision Support System for the Design of Steel Frame Structure (강 프레임 구조물 설계를 위한 의사 결정 지원 시스템의 개발)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.29-41
    • /
    • 2007
  • Structural design, like other complex decision problems, involves many trade-offs among competing criteria. Although mathematical programming models are becoming increasingly realistic, they often have design limitations, that is, there are often relevant issues that cannot be easily captured. From the understanding of these limitations, a decision-support system is developed that can generate some useful alternatives as well as a single optimum value in the optimization of steel frame structures. The alternatives produced using this system are "good" with respect to modeled objectives, and yet are "different," and are often better, with respect to interesting objectives not present in the model. In this study, we created a decision-support system for designing the most cost-effective moment-resisting steel frame structures for resisting lateral loads without compromising overall stability. The proposed approach considers the cost of steel products and the cost of connections within the design process. This system makes use of an optimization formulation, which was modified to generate alternatives of optimum value, which is the result of the trade-off between the number of moment connections and total cost. This trade-off was achieved by reducing the number of moment connections and rearranging them, using the combination of analysis based on the LRFD code and optimization scheme based on genetic algorithms. To evaluate the usefulness of this system, the alternatives were examined with respect to various design aspects.

A Estimation of Soil Conversion Factor Using Digital Photogrammetry and 3D Laser Scanner (디지털사진측량 및 3D 레이저스캐너를 이용한 토랑환산계수의 산정)

  • Lee Jae-Kee;Jung Sung-Heuk;Lee Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.227-234
    • /
    • 2006
  • Ministry of construction & transportation is operating for the soil and rock information system and is considered to accurate application of soil conversion factor that is essentially necessary for accurate calculation of earth volume. Since the balance of cutting earth in public work, the plan of spoil bank or borrow pit are directly related to construction costs, accurate calculation of earth volume and efficient scheme of haul are important. As such, this study has provided methods that can acquire information that is more rapid, applicable to job sites, and trustworthy by comparing resultant values of photogrammetry, laser scanning, or inside job site experimentations, and calculated soil conversion factor by applying photogrammetry and laser scanning methods for hard rock that has difficulty in calculating soil conversion factor. The study can provide alternatives that can resolve the problems of unbalanced earth volume that may arise in applying to plans the earth conversion factor that relies on planning books and experience without considering the characteristics of job site earth, and can establish its relevancy by calculating soil conversion factor for hard rock that has relative difficulties in doing inside or job site testing.

Problem Analysis and Suggestion for Improved Approaches to Ecological Planting and the Establishment of Urban Parks -A Case Study of the Nature Ecological Forest in Yeouido Park, Seoul- (도시공원 생태적 배식의 조성 단계별 문제점 고찰 및 개선방안 -서울시 여의도공원 자연생태의 숲을 사례로-)

  • Seong, Kyong-Ho;Lee, Kyong-Jae;Choi, Jin-Woo;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.91-102
    • /
    • 2011
  • This study was carried out to analyze the problems on several steps of the establishment of the Nature Ecological Forest in Yeouido Park, Seoul, and also to suggest improved approaches on each step. For execution drawing, planting models and plans seemed to be uncertain, and the quantity and size of planting trees seemed to be impractical. For construction, the woody plants planted on the site were different in species and size from the planting plan. Ecological planting was somewhat limited because of the inappropriate soil properties. For management, replacement of the dead trees was not executed properly, and no management scheme was prepared after the replacement period. We suggested improved approaches for the establishment of ecological forests in urban areas as follows: for execution drawing, overstory, understory and herbaceous ground cover layers should be composed based on standard plant community structures. Trees that are available from tree markets should be specified in the planting plan. For construction, trees for planting need to be tagged to identify species and size. When tree species and size are changed, they should be checked to ensure that they are proper to the plant community model. Soil information should be collected to check that they fit the target plant community model. For management, the proper amount of trees needs to be specified in the planting plan by applying regular discount rates, especially for trees supplied from the government sector. The replacement period should be extended from two years to five years. The change of plant communities should be monitored during first five years after establishment.

Research on Changes and Characteristics of GHG Emissions by Major Energy-consuming Universities in Korea - Focused on the variation since the implementation of GHG emission regulation by Government - (에너지 다소비 대학의 온실가스 배출 변화와 특성 - 온실가스 배출 규제 시행 이후의 변화를 중심으로 -)

  • Jung, Hyejin;Kim, In Chol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • It is known that energy usage from Korean Universities was growing rapidly in the early 2000s. But since 2011, the change was caused by GHG emissions regulation enforced by the government. The purpose of this research was to find the characteristics and trends of greenhouse gas emissions from major universities in Korea according to the each university's data and information. The result shows that GHG emissions from University have increased steadily prior to enforcement by 4-5% annually, but the rate of increase marked 0.5~1% in 2011~2013 is the season of emission regulation and the total amount of emissions decreased 3%~5% in 2014~2015 while preparing an emissions trading scheme. Therefore we can say that the enforcement of GHG reduction such as energy target management system makes a visible effect at least in the University sector that level of GHG emissions is from $75kg/m^2$ to $58Kg/m^2$ for seven years. Another result says that the size of research fund is the main factor that affects the amount of GHG emissions before 2011, but the size of building area has been a new factor influencing the GHG emission since 2013. Thus we suggest that the criteria for evaluating the level of GHG emission from University is suitable if it is based on the building area intensity.