• Title/Summary/Keyword: Constraint Matrix

Search Result 226, Processing Time 0.027 seconds

Reliable H Control : A Linlear Matrix Inequality Approach (신뢰성 있는 H 제어 : 선형 행렬 부등식 방법)

  • 이종민;김병국;김성우
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.216-224
    • /
    • 2004
  • In this paper we address reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtainer by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via a numerical example. This paper addresses reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtained by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via numerical example.

Dual-rate Digital Controller Design for Continuous-time Linear Systems

  • Park, Poo-Gyeon;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.468-472
    • /
    • 2003
  • The lifting technique is a standard control procedure that is commonly applied to dual-rate systems, where a critical difficulty is that care must be taken so that the resulting equivalent system preserves the causality constraint between the control signal and the measured output. To overcome this difficulty, the most attractive result has been suggested by defining control time sequences as the union of sample and hold time sequences. However, the sacrifice of regular control period scheme results in some serious disadvantages; restrictions on the implementation to hardware and the corresponding inefficient control scheme. On the contrary, this paper proposes a novel dual-rate control technique, which redescribes the system as a control-rate-based system having regular control period and designs the controller, with no causality constraint, through Linear Matrix Inequality (LMI) formulation.

  • PDF

Effective Calculation Method Finding the Limit of Voltage-Stability (효율적인 전압안정도 한계점 계산에 관한 연구)

  • Song, K.Y.;Kim, S.Y.;Choi, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.35-38
    • /
    • 1991
  • Recent, problems on the voltage-instability have been paid attention in power system and methods to find the limit of voltage-stability, concerned with these problems, were developed. However, these methods are short of precision on the limit of voltage-instability. Here, using the second-order load flow, constraint equation(d Pi/d Vi=0) and its patial differentiations are precisely formulated. Also, since the taylor series expansion of power flow equations terminates at the second-order terms, partial differentiations of constraint equation, that is Hessian, are constant. Then, Hessian matrix are calculated once during iteration process.

  • PDF

A Tracking Gain-Up Controller Design for Controlling the Shake of Actuator (엑츄에이터 흔들림 제어를 위한 트랙킹 Gain-Up 제어기 설계)

  • Jin, Kyoung-Bog;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.988-993
    • /
    • 2009
  • In this paper, we deal with a tracking gain-up controller design problem to control effectively the shake of tracking actuator after a track seek. A minimum tracking gain-up open-loop gain can be calculated by estimating the shake of tracking actuator and a desired transient specification is considered to diminish effectively the shake of actuator. A tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem with a regional stability constraint. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and is evaluated through the experimental results.

General Linearly Constrained Broadband Adaptive Arrays in the Eigenvector Space

  • Chang, Byong Kun
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.73-78
    • /
    • 2017
  • A general linearly constrained broadband adaptive array is examined in the eigenvector space with respect to the optimal weight vector and the adaptive algorithm. The optimal weight vector and the general adaptive algorithm in the eigenvector space are obtained by eigenvector matrix transformation. Their operations are shown to be the same as in the standard coordinate system except for the relevant transformed vectors and matrices. The nulling performance of the general linearly constrained broadband adaptive array depends on the gain factor such that the constraint plane is shifted perpendicularly to the origin by an increase in the gain factor. The general linearly constrained broadband adaptive array is observed to perform better than a conventional linearly constrained adaptive array in a coherent signal environment, while the former performs similarly to the latter in a non-coherent signal environment.

A Computer Method for the Dynamic Analysis of a System of Rigid Bodies in Plane Motion

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a computer method for the dynamic analysis of a system of rigid bodies in plane motion. The formulation rests upon the idea of replacing a rigid body by a dynamically equivalent constrained system of particles. Newton's second law is applied to study the motion of the resulting system of particles without introducing any rotational coordinates. A velocity transformation is used to transform the equations of motion to a reduced set. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and few cut-joints constraint equations should be included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.

A Study on a Sufficient Condition for Decoupling Control System Design (입력과 출력간의 비간섭 제어계 설계에 관한 연구)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.84-88
    • /
    • 1999
  • In this paper, systems described by state-space models are considered. For these systems, author studies the decoupling of linear systems and gives a sufficient condition for a system to be made feedback decouplable. Especially, the condition is given by LMI(Linear Matrix Inequality) form. Based on this condition, it is guaranteed that the system decoupling problem is achieved and the $H_{\infty}$ constraint is satisfied simultaneously. This result can be easily extended to the robust decoupling control system design problems.

  • PDF

Copy Raising Construction in English: A Usage-based Perspective

  • Kim, Jong-Bok
    • Language and Information
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2012
  • In accounting for the so-called copy raising (CR) in English, the movement perspective has assumed that the embedded subject of the CR verb's sentential complement is raised to the matrix subject, leaving behind its pronominal copy. This kind of movement-based analysis raises both empirical and analytical issues, when considering variations in the pronominal copy constraint. This paper investigates the actual uses of the construction, using online-available corpora. Based on this corpus search, we classify two different types of copy raising predicates (genuine and perception), and discuss their grammatical properties in detail. We suggest that the simple copying rule couched upon movement operations is not enough to capture great variations in the uses of the construction, and show that interpretive constraints, e.g., perceptual characterization condition, play an important role in licensing the construction.

  • PDF

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.

Design of H_{\infty} Control for Uncertain Linear Systems with Eigenvalue Assignment Constraint in a Disk (원판내 고유치 배정 조건을 갖는 불확정성 선형 시스템의H_{\infty}제어기 설계)

  • Ma, Sam-Seon;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.520-525
    • /
    • 2000
  • This paper deals with the design of H$\infty$ control for uncertain linear systems with the regional eigenvalue assignment constraint. The considered region is a disk in the left half plane and the two types of time-varying uncertainties are considered. We presents a state feedback control that minimize the L2 gain from the disturbance to the measured output as well as it guarantees that all eigenvalues of closed loop are inside a disk. The state feedback control is obtained by checking the feasibility of linear matrix inequalities (LMI's) which are numerically tractable. Finally we give an example to show the applicability and usefulness of our results.

  • PDF