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I. INTRODUCTION 
 

In a conventional linearly constrained adaptive array, the 

desired signal is assumed to be uncorrelated with the 

interference signals [1]. 

If the desired signal is correlated with the interference 

signals, the desired signal is cancelled in the array output 

depending on the extent of the correlation of this signal with 

the interference signals [2]. To prevent the signal cancellation, 

a variety of methods have been proposed [2-7]. 

In this study, a general linearly constrained broadband 

adaptive array is examined in the eigenvector space and is 

compared with that in the standard coordinate system. 

The general linearly constrained broadband adaptive 

array is implemented in coherent and non-coherent signal 

environments, and its nulling performance is compared with 

that of a conventional linearly constrained adaptive array. 

The value of the gain factor is shown to affect the nulling 

performance such that there exists an optimal gain factor 

that yields the best nulling performance. 

Adaptive array processing techniques have been applied 

in many areas, such as radar [8], sonar [9], and seismology 

[10]. 

 

 

II. OPTIMAL WEIGHT VECTOR IN THE 
EIGENVECTOR SPACE 

   

In conventional linearly constrained adaptive arrays, if 

the desired signal is correlated with the interference signals, 

the desired signal is cancelled in the array output [2]. 

A general linearly constrained broadband adaptive array 

is proposed to reduce the signal cancellation phenomenon in 

coherent and non-coherent signal environments. 
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Abstract 

A general linearly constrained broadband adaptive array is examined in the eigenvector space with respect to the optimal 

weight vector and the adaptive algorithm. The optimal weight vector and the general adaptive algorithm in the eigenvector 

space are obtained by eigenvector matrix transformation. Their operations are shown to be the same as in the standard 

coordinate system except for the relevant transformed vectors and matrices. The nulling performance of the general linearly 

constrained broadband adaptive array depends on the gain factor such that the constraint plane is shifted perpendicularly to the 

origin by an increase in the gain factor. The general linearly constrained broadband adaptive array is observed to perform 

better than a conventional linearly constrained adaptive array in a coherent signal environment, while the former performs 

similarly to the latter in a non-coherent signal environment. 
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Fig. 1. General linearly constrained broadband adaptive array. 

 

 

The general linearly constrained broadband adaptive array 

with N sensor elements (i.e., antennas or hydrophones) 

followed by 𝐿 taps per element is shown in Fig. 1. 

The desired signals in each channel are in phase after they 

pass through the steering time delay right after each sensor. 

Thus, the look direction (i.e., the direction of the desired 

signal) becomes the direction normal to the line of sensors 

after the steering time delay. The error output 𝑒𝑘  is 

generated by the difference between the array output and the 

desired response 𝑑𝑘, which is formed as the output of the 

multichannel uniform all-pass filter scaled by the gain factor. 

The direction of the desired signal is assumed to be known a 

priori. 

In the general linearly constrained broadband adaptive 

array, the optimal weight vector has a unit gain constraint in 

the look direction, which implies that the minimum mean 

square error output can be found by solving the following 

constrained minimization problem:  

 

min  (𝒘 − 𝑔𝒔)𝑻𝑹(𝒘 − 𝑔𝒔) 

subject to    𝑪𝑻𝒘 = 𝒇 ,              (1) 

 

where the 𝑁𝐿 ×  1 weight vector 𝒘 =  [𝑤1 𝑤2  … 𝑤𝑁𝐿]𝑇 

and the 𝑁𝐿 ×  1  weight vector 𝒔  of the multichannel 

allpass filter is given by 𝒔 = [
1

𝑁

1

𝑁
…

1

𝑁
 00 … …  0]

𝑇

. In Fig. 

1, 𝑐𝑖  = 
1

𝑁
, 1 < i < N. 𝑹 denotes an NL × NL input signal 

correlation matrix. The 𝑙th
 column vector of the 𝑁𝐿 ×  𝐿 

constraint matrix 𝑪 consists of elements of 0 except for the 

𝑙th
 group of 𝑁 elements of 1, and the 𝐿 ×  1 constraint 

vector is given by 𝒇 = [1 0 0 …  0]𝑇. 

The method of Lagrange multipliers is used for finding 

the optimal weight vector by solving the unconstrained 

minimization problem with the following objective function:  

𝑶(𝒘) =  (𝒘 − 𝑔𝒔)𝑻𝑹(𝒘 − 𝑔𝒔) + 𝝀𝑻(𝑪𝑻𝒘 − 𝒇),       (2) 

                                  

where 𝝀 denotes an 𝐿 ×  1 Lagrange multiplier vector. 

The optimal weight vector is found by setting the gradient 

of (2) equal to zero as follows: 

 

     𝒘𝑜 = 𝑔𝒔 − 𝑹−1𝑪𝝀ℎ ,           (3) 

 

where 𝝀ℎ is equal to 1/2𝝀. 

We obtain the optimal weight vector by using the linear 

constraint in (1) with (3) as follows: 

 

𝒘𝑜 = 𝑔[𝑰 − 𝑹−1𝑪(𝑪𝑻𝑹−1𝑪)−𝟏𝑪𝑻]𝒔 + 

 𝑹−1𝑪(𝑪𝑻𝑹−1𝑪)−𝟏𝒇.                  (4) 

 

The optimal weight vector in the eigenvector space can 

be obtained by using the normalized eigenvector matrix 𝑸 

of 𝑹  such that 𝑹 =  𝑸𝜦𝑸−𝟏 . Here, 𝜦  denotes the 

eigenvalue matrix, which is a diagonal matrix whose 

diagonal elements are eigenvalues. By substituting 

𝑸𝜦𝑸−𝟏 for 𝑹 in (4), we obtain the following: 

 

𝒘𝑜 = 𝑔[𝑰 − (𝑸𝜦𝑸−𝟏)−1𝑪(𝑪𝑻(𝑸𝜦𝑸−𝟏)−1𝑪)−𝟏𝑪𝑻]𝒔 + 

 (𝑸𝜦𝑸−𝟏)−1𝑪(𝑪𝑻(𝑸𝜦𝑸−𝟏)−1𝑪)−𝟏𝒇 .         (5) 

 

By rearranging (5), we obtain the following optimal 

weight vector: 

 

𝒛𝑜 = 𝑔[𝑰 −  𝜦−1𝑩(𝑩𝑻𝜦−1𝑩)−𝟏𝑩𝑻]𝒕 + 

 𝜦−1𝑩(𝑩𝑻𝜦−1𝑩)−𝟏𝒇 ,              (6) 

 

where 𝒛𝑜 = 𝑸−𝟏𝒘𝑜, 𝑩 = 𝑸−𝟏𝑪, and 𝒕 = 𝑸−𝟏𝒔. 

The operation of the optimal weight vector in the 

eigenvector space is the same as in the standard coordinate 

system except that 𝑹 and 𝑪 are replaced with 𝜦 and 𝑩, 

respectively. 

In the translated weight vector space, the translated 

weight vector (𝒘 − 𝑔𝑺)  is replaced with 𝒗 . Then, the 

optimization problem in the translated weight vector space 

can be formulated as follows: 

 

min 𝒗𝑻𝑹𝒗 

 subject to  𝑪𝑻𝒗 = (1 − 𝑔)𝒇.          (7) 

 

The objective function with the Lagrange multiplier 

vector is represented as follows: 

 

𝑶(𝒗) = 1/2𝒗𝑻𝑹𝒗 + 𝝀𝑻(𝑪𝑻𝒗 − (1 − 𝑔)𝒇).      (8) 

 

The unconstrained minimization of (8) yields the optimal 

weight vector as follows: 
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𝒗𝒐 = (1 − 𝑔)𝑹−1𝑪(𝑪𝑻𝑹−1𝑪)−𝟏𝒇.         (9) 

 

Transformation of 𝒗𝒐 to the eigenvector space produces 

the optimal weight vector in the translated weight vector 

space as follows: 
 

𝒖𝒐 = (1 − 𝑔)𝜦−1𝑩(𝑩𝑻𝜦−1𝑩)−𝟏𝒇.        (10) 

 

From (9) and (10), we infer that in the translated weight 

vector space, the constraint plane is shifted to the origin 

perpendicularly by a factor of 𝑔 such that an increase in 𝑔 

results in a decrease in the distance from the constraint 

plane to the origin, which has an effect on the nulling 

performance. In the eigenvector space, 𝜦 and 𝑩 are used 

instead of the 𝑹 and 𝑪 of the standard coordinate system. 

 

 

III. GENERAL ADAPTIVE ALGORITHM 
 

The general adaptive algorithm is derived by minimizing 

the mean square error using the steepest descent method as 

follows [11]: 
 

𝒘𝑘+1 =  𝒘𝑘  +  𝜇(−𝜵(𝒘)𝑘),           (11) 
 

where 𝜇  denotes the convergence parameter and 𝑘 

represents the iteration index. If the gradient of (2) with 

respect to 𝒘 is substituted into (11), we have the following 

iterative equation: 
 

𝒘𝑘+1 =  𝒘𝑘  +  𝜇𝑹𝒘𝑘 +  𝜇𝑔𝑹𝒔 −  𝜇𝑪𝝀ℎ.            (12) 
 

We express the general adaptive algorithm using the 

linear constraint in (1) with (12) as follows:  
 

𝒘𝑘+1 =  𝑷[𝒘𝑘 −  𝜇𝑹(𝑤𝑘 −  𝑔𝒔)] + 𝑭,      (13) 

 

where the 𝑁𝐿 ×  N𝐿 projection matrix 𝑷 is expressed as 

follows: 

 

 𝑷 =  𝑰 − 𝑪(𝑪T𝑪)−1𝑪T,           (14) 

  

which projects a vector onto the constraint subspace, which 

is an orthogonal complement of the column space of 𝑪. 

The 𝑁𝐿 ×  1 vector 𝑭 can then be expressed as follows: 
 

𝑭 = 𝑪(𝑪T𝑪 )−1𝒇,               (15) 
 

which is in the column space and is normal to the constraint 

subspace. 

The general adaptive algorithm in the eigenvector space 

can be obtained with the eigenvector matrix transformation 

of (13) and be expressed as follows: 

 

𝒛𝑘+1 =  𝑷𝒆[𝒛𝑘 −  𝜇𝜦(𝒛𝑘 −  𝑔𝒕)] + 𝑭𝒆,         (16) 

where 𝒛𝑘 = 𝑸−𝟏𝒘𝑘 

 

𝑷𝒆 =  𝑰 − 𝑩(𝑩T𝑩)−1𝑩T,            (17)           
 

and 
 

 𝑭𝒆 = 𝑩(𝑩T𝑩 )−1𝒇.               (18) 

 

A general linearly constrained least mean squares (LMS) 

algorithm can be obtained by substituting the instantaneous 

correlation matrix 𝒙𝑘𝒙𝑘
𝑇 for 𝑹 in (13) and is represented 

as follows: 

 

𝒘𝑘+1 =  𝑷[𝒘𝑘 −  𝜇𝑒𝑘𝒙𝑘] + 𝑭.           (19)  

 

The general linearly constrained LMS algorithm in the 

eigenvector space through the eigenvector matrix 

transformation is expressed as follows: 

 

𝒛𝑘+1 =  𝑷𝒆[𝒛𝑘 −  𝜇𝑒𝑘𝒃𝑘] + 𝑭𝒆,        (20) 

 

where 𝒃𝑘 = 𝑸−𝟏𝒙𝑘. 

The general linearly constrained LMS algorithm in the 

eigenvector space performs similarly to that in the standard 

coordinate system except for the relevant vectors and 

matrices transformed with respect to the eigenvector space.  

In the computer simulation, the array weights are updated 

iteratively by the general linearly constrained LMS 

algorithm in (19). 

 

 

IV. SIMULATION RESULTS 
 

A linearly constrained broadband adaptive array with five 

sensor elements and three weights per element is used for 

demonstrating the nulling performance. The bandwidth of 

the incoming signals is 3 Hz with the lower and upper 

frequencies of 8 Hz and 11 Hz, respectively. The sampling 

frequency is 608 Hz. The convergence parameter 𝜇  is 

assumed to be 0.0001. Further, the incoming signals are 

assumed to be plain waves. 

The nulling performance is observed to depend on the 

variation of the gain factor. The simulation results presented 

in [6] are redisplayed to demonstrate the nulling perfor-

mance in coherent and non-coherent signal environments.  

 
A. Case for Coherent Interference 

 

Coherent interference is assumed to be incident at 30° 

with respect to the array normal. The variation of the error 

power between the array output and the desired signal is 

shown in Fig. 2. The optimal value of 𝑔 is shown to be 

0.33. The comparison of the array performance for 𝑔 =

 0.33, the conventional linearly constrained adaptive array 
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proposed by Frost, and 𝑔 = 2.0 is shown in Figs. 3 and 4 

with respect to the array output and the desired signal for 

𝑘 = 1– 1000 and 28001– 29000, respectively. 

For 28001 ≤ 𝑘 ≤  29000 , the case for 𝑔 = 0.33 

exhibits the best performance, while the Frost’s array 

performs better than the case for 𝑔 = 2.0. The beam 

patterns are shown in Fig. 5, in which the case for 𝑔 = 0.33 

exhibits the deepest null in the direction of the interference, 

while the Frost’s array yields a lower gain than the case for 

𝑔 = 2.0. 

 

 

 
Fig. 2. Variation of the power of the error signal in terms of the gain 

factor for coherent interference. 

 

 

Fig. 3. Comparison of the array output (solid line) and the desired signal 

(dotted line) for coherent interference: (a) g = 0.33, (b) Frost’s array, and 
(c) g = 2, for 1 ≤ k ≤ 1000. 

 
Fig. 4. Comparison of the array output (solid line) and the desired signal 

(dotted line) for coherent interference: (a) g = 0.33, (b) Frost’s array, and 
(c) g = 2, for 28001 ≤ k ≤ 29000. 

 

 
Fig. 5. Comparison of beam patterns for coherent interference at 30°. 

 

B. Case for Non-coherent Interference 
 

Non-coherent interference is assumed to be incident at 

−48.5°. The variation of the error power between the array 

output and the desired signal is shown in Fig. 6. The optimal 

value of 𝑔 is shown to be 0.09. The comparison of the array 

performance for 𝑔 = 0.09, the conventional linearly 

constrained adaptive array proposed by Frost, and 𝑔 =  2.0 

is shown in Figs. 7 and 8 with respect to the array output 

and the desired signal for 𝑘 = 1– 1000 and 28001– 29000, 

respectively. 
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Fig. 6. Variation of the power of the error signal in terms of the gain 

factor for non-coherent interference. 

 

 

 

Fig. 7. Comparison of the array output (solid line) and the desired signal 

(dotted line) for non-coherent interference: (a) g = 0.09, (b) Frost’s array, 
and (c) g = 2.0, for 1 ≤ k ≤ 1000. 

 

 

For 𝑘 = 28001– 29000 , the case for 𝑔 = 0.09 and 

Frost’s array yield a similar performance, while both of 

them perform better than the case for 𝑔 =  2.0. The beam 

patterns are shown in Fig. 9, in which the case for 𝑔 = 0.09 

and Frost’s array yields a similar gain at the incident angle 

of the non-coherent interference. A more exact null is formed 

at the incident angle of the non-coherent interference for the 

case of 𝑔 = 0.09 than for Frost’s array. 

 

Fig. 8. Comparison of the array output (solid line) and the desired signal 

(dotted line) for non-coherent interference: (a) g = 0.09, (b) Frost’s array, 
and (c) g = 2.0, for 28001 ≤ k ≤ 29000. 

 

 

 

Fig. 9. Comparison of beam patterns for non-coherent interference at 

−48.5°. 

 

 

V. CONCLUSION 
 
The optimal weight vector and the adaptive algorithm of 

the general linearly constrained broadband adaptive array 

are examined in the eigenvector space. A linear array is 

implemented to find the nulling performance of the general 

linearly constrained broadband adaptive array in coherent 

and non-coherent signal environments. 

The optimal weight vector and the general adaptive 

algorithm in the eigenvector space have forms similar to 
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those in the standard coordinate system. The gain factor has 

an effect on the nulling performance by perpendicularly 

shifting the constraint plane to the origin in the weight 

vector space. 

The general linearly constrained broadband adaptive 

array with the optimal gain factor is shown to perform better 

than the conventional linearly constrained adaptive array in 

a coherent signal environment, while it yields a performance 

similar to that of the conventional linearly constrained 

adaptive array in a non-coherent signal environment. 
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