• Title/Summary/Keyword: Constitutive Equations

Search Result 440, Processing Time 0.022 seconds

A phenomenological approach to suspensions with viscoelastic matrices

  • Tanner Roger I.;Qi Fuzhong
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.149-156
    • /
    • 2005
  • A simple constitutive model for viscoelastic suspensions is discussed in this paper. The model can be used to predict the rheological properties (relative viscosity and all stresses) for viscoelastic suspensions in shear and elongational flow, and the constitutive equations combine a 'viscoelastic' behaviour component and a 'Newtonian' behaviour component. As expected, the model gives a prediction of positive first normal stress difference and negative second normal stress difference; the dimensionless first normal stress difference strongly depends on the shear rate and decreases with the volume fraction of solid phase, but the dimensionless second normal stress difference (in magnitude) is nearly independent of the shear rate and increases with the volume fraction. The relative viscosities and all the stresses have been tested against available experimental measurements.

A Study on Constitutive Equations for Warm and Hot Forging (온, 열간 단조의 구성방정식에 관한 연구)

  • 강종훈;박인우;제진수;강성수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.75-81
    • /
    • 1998
  • Simulations of warm and hot forming processes need reliable expressions of flow stress at high temperatures. To get flow stress of the materials usually tension, compression and torsion tests are conducted. In this study, hot compression tests were adopted to get flow stress of medium carbon steel. Experiments have been conducted under both isothermal, near constant strain rate in the temperature ranges 650~100$0^{\circ}C$. Phase transformation takes place by temperature changes for steels in hot and warm forging stage. So Constitutive equation are formulated as the function of strain, strain rate and temperature for isothermal conditions and phase transformation.

  • PDF

Determination of the Temperature Coefficient of the Constitutive Equation using the Response-Surface Method to Predict the Cutting Force (반응표면법을 이용한 구성방정식의 온도계수 결정과 절삭력 예측)

  • Ku, Byeung-Mun;Kim, Tae-Ho;Park, Jung-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.9-18
    • /
    • 2021
  • The cutting force in a cutting simulation is determined by the cutting conditions, such as cutting speed, feed rate, and depth of cut. The cutting force changes, depending on the material and cutting conditions, and is affected by the heat generated during cutting. The physical properties for predicting the cutting force use constitutive equations as functions of the hardening term, rate-hardening term, and thermal-softening term. To accurately predict the thermal properties, it is necessary to accurately predict the thermal-softening coefficient. In this study, the thermal-softening coefficient was determined, and the cutting force was predicted, using the response-surface method with the cutting conditions and the thermal-softening coefficient as factors.

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.

Study on the Dynamic Characteristics of Composite Shells Subjected to an Electromagnetic Field (자기장을 받는 복합재료 원통쉘의 동적특성 연구)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.748-754
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Model of laminated composite shells subjected to a combination of magnetic and thermal fields is developed. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Dynamic characteristic of composite shells for change of magnetic fields is investigated.

  • PDF

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields with Different Boundary Conditions (경계조건에 따른 자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Ohseop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.653-660
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT with two different boundary conditions(C-C, S-S) was performed through discretization of equations of motion and boundary condition. Model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence for each boundary conditions are investigated and pertinent conclusions are derived.

  • PDF

Plane-strain bending based on ideal flow theory (이상 유동 이론에서의 평면 변형 벤딩)

  • Alexandrov Sergei;Lee W.;Chung K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.

  • PDF

Finite Element Analysis considering transformation plasticity for a welded structure (변태 소성을 고려한 용접 구조물의 유한 요소 해석)

  • 김주완;임세영
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.116-118
    • /
    • 2001
  • We propose an implicit numerical implementation for Leblond's transformation plasticity constitutive equations , which are widely used in welded steel structure. We apply Euler backward scheme rule to integrate the equations and determine the consistent tangent modulus. The implementation may be used with updated Lagrangian formulation. we test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  • PDF

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

Dynamic Characteristics of Composite Plates Subjected to Electromagnetic Field (자기장을 받는 복합재료 판의 동적 특성 연구)

  • Kim, Sung-Kyun;Lee, Kune-Woo;Moon, Jei-Kwon;Choi, Jong-Woon;Kim, Young-Jun;Park, Sang-Yun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.681-688
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. In order to obtain the implications of a number of geometrical and physical features of the model, one special case is investigated, that is, free vibration of a composite plate immersed in a transversal magnetic field. Special coupling effects between the magnetic and elastic fields are revealed in this paper.

  • PDF