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Abstract

The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal
flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations
constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design
solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In
the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes
are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form
solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are
not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given
class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also
made.

Key Words : Constitutive laws, Bulk forming design, Ideal flow theory, Perfectly/plastic materials, Rate sensitive
hardening behavior

1. Introduction In the present paper, an effect of different constitutive
laws on the ideal flow design is discussed.

In the ideal plastic flow theory, all material elements

follow minimum work paths in which one family of 2. Statement of the problem

material lines is perpetually tangent to principal strain

rate vectors"’. The theory can be applied to find strain Consider a class of initial shapes, which are
paths that lead to the minimum work of deformation for rectangular with sides 2L and H as shown in Fig.
given initial and final shapes and/or to find an optimal 1(a). Its area Q@ =2LH is fixed, but L and H may
initial shape assuming that the final shape is prescribed. vary to satisfy the criterion of optimality. The initial
A disadvantage of the theory is that, in principle, it is shape should be transformed into the final shape
only applicable for rigid-perfectly plastic solids based on prescribed in advance in Fig. 1(b) under the plane-strain
the Tresca yield criterion and its associated flow rule®. condition. The final shape is completely defined by the
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Fig. 1 Notations for (a) initial and (b) final shapes
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Fig. 2 Notations for an arbitrary intermediate shape

radius r, and the angle 6, . The surface of the body is

assumed to be free of shear stress. The constitutive law
for the material consists of the yield criterion and its
associated flow rule. The yield stress is assumed to be
dependent on the equivalent strain or/and the equivalent
strain rate.

3. Kinematics of the process

Kinematics of the process is described by the
incompressibility equation and the condition that one
family of material lines is perpetually tangent to
principal strain rate vectors. An additional requirement is
that neither principal strain rate changes its sign at each

material point throughout the process. It is convenient to
introduce a Cartesian Eulerian coordinate system xy

and a Lagrangian convective coordinate system (7
defined by the conditions x=¢ and y=75 at the
initial instant, =0 Consider the following

transformation equations

M

where a is a time-like variable such that a=0 at the
initial instant and s is a function of a . It is possible to
show that the initial conditions are satisfied if s=1/4
at a=0. Using Eq.(1) the components of the metric
tensor of the Lagrangian coordinates are determined in
the form

8z =1/4(§a+s), & =4(§a+s), 8,=0. (@

Since g, =0 , the coordinate curves of the

Lagrangian coordinate system coincide with trajectories
of the principal strain. Using Eq.(2) the principal strain
rates can be found in the form

3 (§+ds/da)ii_a_

T Ty Cavs) i @

The only condition that remains to be considered is
that neither principal strain rate changes its sign at each
material point throughout the process. The sign of each
of these strain rates changes where ¢ =-ds/da .
Therefore, ideal flow paths are obtained if
ds/da=—-¢, = const . 1t follows from this condition and
the initial condition for s that s=1/4- ¢ a. Then, Eqgs.

(2) and (3) result in

foox ) B g 4(-2,)  d(Ha)

gy O 4Ha(§’—fo)+1 dr

4

where the upper sign corresponds to -1<¢ <, , and
the lower sign to £, <¢ <0 and the equivalent strain

rate £, is defined as 2l§4§|. Also, £ =¢/H and

QTO =¢,/H . The equivalent strain is given by
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ds,0=¢, . )

Substituting Eq.(4) into Eq.(5) and integrating, with the
initial condition £, =0 at a=0, gives

&, = ¢1n[4Ha(Z ~&)+ 1] . (6)

The structure of Egs.(1) shows that the boundary of any
intermediate shape consists of two circular arcs and two
straight lines (Fig.2). For later convenience, a cylindrical

coordinate system r@ with its origin at x:—x/E/a
and y=0 isintroduced by

x+\/;/a=rc059 and y=rsind. @)
It follows from Egs.(1) and (7) that

s
2
a

and 0=2an. 8)

4. Stress analysis

It follows from Eqs.(8) that the coordinate curves of
the ¢n coordinate system coincide with the coordinate

curves of the rf coordinate system. Therefore, the

isotropic  plane-strain  yield criterion  becomes
0, —0, =12k where k is the shear yield stress. It

follows form Eqs.(4) and (6) that neither £, nor ¢,
depends on 7 or, due to Egs.(8), on 6. Hence, the
only non-trivial equilibrium equation is

99, 3 4kHa ©)

o 4(&-&,)Ha+1

It is clear that the solution to this equation exists if the
boundary conditions on o, are o, =const at

C=0and ¢ =-1.
5. Process design for different constitutive laws

The solution described in the previous sections
contains one free parameter, £, , - This parameter can be
determined by means of the criterion of optimality (the

plastic work attains its minimum among a class of initial
shapes chosen). In Lagrangian coordinates, the plastic

work per unit volume is defined by the equation

ow — 4k(5"’50)
= 4+ — — .
o(Ha)  4Ha({ -&,)+1

(10)

The plastic work required to deform the initial shape into
the final shape, W , can be found by integration w over

the area. The value of W has been minimized
numerically assuming that k= aodl(seq)A(ﬁeq) where
AE)=1+(&/8) and
(D(gﬁq) =1+(f- l)(] —e " ) . The result of the

minimization is the optimal value of L. The perfectly
plastic material is obtained at d)(auq)El and

/\(ﬁw)sl (in this case L=1, ), the rigid-plastic,
hardening material at A(fe)zl (L=L, ) the
viscoplastic material at CD(seq)El (L=L,). In the
case of viscoplastic, hardening material L=L,, . A

measure of the deviation from the design based on the
perfectly/plastic material can be defined by

= ‘LML_ Lﬂlli , 3, !LWL_ LPP] , 5‘”7'1 _ |L"P/'L_ L,,,,| (1D

PP (24 (24

As typical values of an aluminum alloy, the following
values are considered: »n=7.63 and giq =6500s"" @,

In all cases, it is assumed that 6, =7/2, r, =J§/2,
Q=7x/2, and u=1.0s".

deviation parameters and the dimensionless plastic work,
E=W/[(c,Q), calculated at the optimum values of L

The wvariation of the

with B and m are shown in Figs.3-6.

6. Conclusion

The main result of this work is that the effect of various
constitutive laws on the ideal flow design is small and
maybe even negligible in many cases. It is confirmed
from Figs.3-6 in which the dependence of the measures
of deviation from the perfectly/plastic design introduced
in Eq.(11) on different material parameters is virtually
minimal. The maximum deviation is less than 1.5%. It
suggests that designs based on the perfectly/plastic
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Fig.3 Variation of 5, and E," with 8 for the

rigid/plastic, hardening material
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Fig. 4 Variation of 5, and E;" with m for the

viscoplastic material

material provide reasonable design guidelines for quite
an arbitrary constitutive law.
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