• Title/Summary/Keyword: Constant current source

Search Result 251, Processing Time 0.028 seconds

The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications (헥사메틸렌테트라민 농도에 따른 수산화니켈 입자의 특성 분석 및 의사커패시터 응용)

  • Kim, Dong Yeon;Jeong, Young-Min;Baek, Seong-Ho;Son, Injoon
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.231-236
    • /
    • 2019
  • Ni hydroxides ($Ni(OH)_2$) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the $Ni(OH)_2$ structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based $OH^-$ in the solution; thus, the growth rate and morphological structure of $Ni(OH)_2$ are influenced by HMT concentration. When $Ni(OH)_2$ is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, $Ni(OH)_2$ is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed $Ni(OH)_2$ grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the $Ni(OH)_2$ electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.

Technical requirements for cultured meat production: a review

  • Ramani, Sivasubramanian;Ko, Deunsol;Kim, Bosung;Cho, Changjun;Kim, Woosang;Jo, Cheorun;Lee, Chang-Kyu;Kang, Jungsun;Hur, Sunjin;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.681-692
    • /
    • 2021
  • Environment, food, and disease have a selective force on the present and future as well as our genome. Adaptation of livestock and the environmental nexus, including forest encroachment for anthropological needs, has been proven to cause emerging infectious diseases. Further, these demand changes in meat production and market systems. Meat is a reliable source of protein, with a majority of the world population consumes meat. To meet the increasing demands of meat production as well as address issues, such as current environmental pollution, animal welfare, and outbreaks, cellular agriculture has emerged as one of the next industrial revolutions. Lab grown meat or cell cultured meat is a promising way to pursue this; however, it still needs to resemble traditional meat and be assured safety for human consumption. Further, to mimic the palatability of traditional meat, the process of cultured meat production starts from skeletal muscle progenitor cells isolated from animals that proliferate and differentiate into skeletal muscle using cell culture techniques. Due to several lacunae in the current approaches, production of muscle replicas is not possible yet. Our review shows that constant research in this field will resolve the existing constraints and enable successful cultured meat production in the near future. Therefore, production of cultured meat is a better solution that looks after environmental issues, spread of outbreaks, antibiotic resistance through the zoonotic spread, food and economic crises.

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System (연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In addition to the stack that directly generates electricity by the reaction of hydrogen and oxygen, the fuel cell power generation system has a reformer that generates hydrogen from various fuels such as methanol and natural gas. It also consists of a power converter that converts the DC voltage generated in the stack into a stable AC voltage. The fuel cell output of such a system is direct current, and in order to be used at home, an inverter device that converts it into alternating current through a power converter is required. In addition, a DC-DC step-up converter is used to boost the fuel cell voltage to about 30~70V, which is the inverter operating voltage, to about 380V. The DC-DC step-up converter is a DC voltage variable device that exists between the fuel cell output and the inverter. Accordingly, since a constant output voltage of the converter is generated in response to a change in the output voltage of the fuel cell, the inverter can receive constant power regardless of the voltage change of the fuel cell. Therefore, in this paper, we discuss the detailed hardware design of the full-bridge converter, which is the main power source of the inverter that receives the fuel cell output voltage (30~70V) as an input and is applied to the grid among the members of the fuel cell power generation system.

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

Practicability Assessment of Spherical Type Mechanical Check Device (SMCD) (Mechanical Check용 Spherical Device의 제작 및 특성 평가)

  • Lee, Byung-Koo;Kim, Gun-Oh;Kweon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2007
  • Purpose: Digital medical image commenced with an introduction of PACS has become more popular today in the radiation diagnosis and medical treatment and made great progress, in particular, for medical testing field, whereas it has made slow progress for radiation therapy area. In order to accommodate the current trend of digital from analog, a spherical type mechanical check device (SMCD) that is form of spherical differing from the existing form of flat or cube has been designed and tested its practicability to replace the part in mechanical check with digital image from QA operation. Materials and Methods: If the distance maintains constant between source(target) and image detector with constant distance to the center of spherical type mechanical check device(SMCD), the size will be shown as a constant image at all times regardless of its direction exposed. For the test, two accurate hemispheres are made and put together which results in a sphere of the equilateral circle. Results: It enables a variety of implementation of the existing mechanical check using digital image as follows: congruity level of radiation field and light field, size accuracy of radiation field and collimation field, gantry rotation isocenter check, collimation rotation isocenter check, room laser accuracy check, collimation rotation angle check, couch rotation angle check, and more. Conclusion: It has proved its practicability in checking isocenter congruity level as real time at the time of simultaneous rotation between gantry and couch that is applied to the non-coplanar field, which had been hard to apply as a device formed of existing flat or cube.

  • PDF

Measurement of Vestibular Ocular Reflex in Normal Subjects Using Galvanic Stimulator and Videooculograph (전기자극과 VOG(Videooculograph)를 이용한 정상인의 전정 안반사 측정)

  • 김수찬;정운교;남기창;이원상;김영하;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.487-496
    • /
    • 2001
  • In this study, a galvanic stimulator providing bipolar mode controlled by a PIC(peripheral interface controller) was constructed to evaluate vestibular function The maximum load and maximum current intensity of the constant current source were 3$k\Omega$ and 5mA. respectively. and it could Produce DC, sine wavers. or Pulse waves. Eve movements of 20 normal subjects by galvanic stimulation were analyzed using a commercial videooculogragh. During stimulating with DC for 30 sec. we recorded the response of eye movement with current intensity of 0.75. 1 2, and 3 mA. Nystagmus occurred to all the subjects when the galvanic stimulus intensity was larger than 2 mA. Average SPV(slow Phase eye movement velocity) and the number of nystagmus increased from 7.1 to 4.8 deg/sec and from 17 to 48, respectively, when the stimulus current increased from 0.75 to 3 mA. All the fast eye movement of the nystagmus were the direction of the negative electrode. The asymmetry which means the difference between right- and left-eye movements decreased when the stimulus intensity increased. It is expected that this study would be useful in evaluating vestibular function and in studying basic Physiology mechanism of vestibular ocular reflex by galvanic stimulus .

  • PDF

Development of a Voltage Measuring System for the Pusan-Hamada Submarine Cable (부산 - 병전간 해저케이블 전압측정 장치의 개발)

  • Bahk, Kyung-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.255-260
    • /
    • 1991
  • A voltage measuring system specified for the voltage fluctuation of the Pusan-Hamada submarine cable is developed by adding circuits of differential amplification and analog-to-digital conversion to a microprocessor-based data logger with a data modem. This system is charaterized by its small size. no power failure. fully unmanned operation. and precise instrumental drift correction. In addition to the cable voltage and current it measures an ambient temperature and a mercury cell voltage in order to calibrate temperature effect and check its long-term stability. The data acquired by this system show that the voltage signal. comprising fast random noises with a constant width of about 0.2V. fluctuates within a range of about 1V and the fluctuation frequency is similar to that of tidal motion. The source voltage of power feeding equipment (PFE) for the cable system seems to be affected when the room temperature changes rapidly.

  • PDF

Development of Bioelectric Impedance Measurement System Using Multi-Frequency Applying Method

  • Kim, J.H.;Jang, W.Y.;Kim, S.S.;Son, J.M.;Park, G.C.;Kim, Y.J.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.368-376
    • /
    • 2014
  • In order to measure the segmental impedance of the body, a bioelectrical impedance measurement system (BIMS) using multi-frequency applying method and two-electrode method was implemented in this study. The BIMS was composed of constant current source, automatic gain control, and multi-frequency generation units. Three experiments were performed using the BIMS and a commercial impedance analyzer (CIA). First, in order to evaluate the performance of the BIMS, four RC circuits connected with a resistor and capacitor in serial and/or parallel were composed. Bioelectrical impedance (BI) was measured by applying multi-frequencies -5, 10, 50, 100, 150, 200, 300, 400, and 500 KHz - to each circuit. BI values measured by the BIMS were in good agreement with those obtained by the CIA for four RC circuits. Second, after measuring BI at each frequency by applying multi-frequency to the left and right forearm and the popliteal region of the body, BI values measured by the BIMS were compared to those acquired by the CIA. Third, when the distance between electrodes was changed to 1, 3, 5, 7, 9, 11, 13, and 15 cm, BI by the BIMS was also compared to BI from the CIA. In addition, BI of extracellular fluid (ECF) was measured at each frequency ranging from 10 to 500 KHz. BI of intracellular fluid (ICF) was calculated by subtracting BI of ECF measured at 500 kHZ from BI measured at seven frequencies ranging from 50 to 500 KHz. BI of ICF and ECF decreased as the frequency increased. BI of ICF sharply decreased at frequencies above 300 KHz.

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.