DOI QR코드

DOI QR Code

The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications

헥사메틸렌테트라민 농도에 따른 수산화니켈 입자의 특성 분석 및 의사커패시터 응용

  • Kim, Dong Yeon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Jeong, Young-Min (Smart Textile Convergence Research Group, DGIST) ;
  • Baek, Seong-Ho (Smart Textile Convergence Research Group, DGIST) ;
  • Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
  • 김동연 (경북대학교 신소재공학부) ;
  • 정영민 (대구경북과학기술원 스마트섬유융합연구실) ;
  • 백성호 (대구경북과학기술원 스마트섬유융합연구실) ;
  • 손인준 (경북대학교 신소재공학부)
  • Received : 2019.06.07
  • Accepted : 2019.06.23
  • Published : 2019.06.28

Abstract

Ni hydroxides ($Ni(OH)_2$) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the $Ni(OH)_2$ structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based $OH^-$ in the solution; thus, the growth rate and morphological structure of $Ni(OH)_2$ are influenced by HMT concentration. When $Ni(OH)_2$ is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, $Ni(OH)_2$ is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed $Ni(OH)_2$ grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the $Ni(OH)_2$ electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.

Keywords

References

  1. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang: Nat. Commun., 4 (2013) 1894. https://doi.org/10.1038/ncomms2932
  2. H. Wang, H. S. Casalongue, Y. Liang and H. Dai: J. Am. Chem. Soc., 132 (2010) 7472. https://doi.org/10.1021/ja102267j
  3. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia: Nanoscale, 5 (2013) 8879. https://doi.org/10.1039/c3nr02958a
  4. C. Hou, X.-Y. Lang, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li, W.-T. Zheng, J.-S. Lian and Q. Jiang: J. Mater. Chem. A, 3 (2015) 23412. https://doi.org/10.1039/C5TA05335H
  5. H. Jiang, T. Zhao, C. Li and J. Ma: J. Mater. Chem., 21 (2011) 3818. https://doi.org/10.1039/c0jm03830j
  6. S. E. Moosavifard, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner and M. F. Mousavi: ACS Appl. Mater. Interfaces, 7 (2015) 4851. https://doi.org/10.1021/am508816t
  7. M. Huang, F. Li, F. Dong, Y. X. Zhang and L. L. Zhang: J. Mater. Chem. A, 3 (2015) 21380. https://doi.org/10.1039/C5TA05523G
  8. V. Subramanian, H. Zhu and B. Wei: J. Power Sources, 159 (2006) 361. https://doi.org/10.1016/j.jpowsour.2006.04.012
  9. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak: Chem. Phys. Lett., 347 (2001) 36. https://doi.org/10.1016/S0009-2614(01)01037-5
  10. T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu and C.-C. Hu: Adv. Mater., 22 (2010) 347. https://doi.org/10.1002/adma.200902175
  11. A. Pendashteh, M. F. Mousavi and M. S. Rahmanifar: Electrochim. Acta, 88 (2013) 347. https://doi.org/10.1016/j.electacta.2012.10.088
  12. W. Chen, C. Xia and H. N. Alshareef: ACS Nano, 8 (2014) 9531. https://doi.org/10.1021/nn503814y
  13. R. Orinakova, A. Turonova, D. Kladekova, M. Galova and R. M. Smith: J. Appl. Electrochem., 36 (2006) 957. https://doi.org/10.1007/s10800-006-9162-7
  14. L. Feng, Y. Zhu, H. Ding and C. Ni: J. Power Sources, 267 (2014) 430. https://doi.org/10.1016/j.jpowsour.2014.05.092
  15. G.-W. Yang, C.-L. Xu and H.-L. Li: Chem. Commun., 48 (2008) 6537.
  16. G.-R. Fu, Z.-A. Hu, L.-J. Xie, X.-Q. Jin, Y.-L. Xie, Y.-X. Wang, Z.-Y. Zhang, Y.-Y. Yang and H.-Y. Wu: Int. J. Electrochem. Sci., 4 (2009) 1052.
  17. S. Kim, K. Park and K-I. Jung: J. Korean Powder Metall. Inst., 23 (2016) 311. https://doi.org/10.4150/KPMI.2016.23.4.311
  18. T. Priyadharshini, B. Saravanakumar, G. Ravi, A. Sakunthala and R. Yuvakkumar: J. Nanosci. Nanotechnol., 18 (2018) 4093. https://doi.org/10.1166/jnn.2018.15011
  19. J. Xu, T. Chen, X. Wang, B. Xue and Y.-X. Li: Catal. Sci. Technol., 4 (2014) 2126. https://doi.org/10.1039/c4cy00183d
  20. V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella and S. Mirabella: J. Phys. Chem. C, 118 (2014) 28189. https://doi.org/10.1021/jp507496a
  21. X. Gao, X. Li and W. Yu: J. Phys. Chem. B, 109 (2005) 1155. https://doi.org/10.1021/jp046267s
  22. D. Grujicic and B. Pesic: Electrochim. Acta, 47 (2002) 2901. https://doi.org/10.1016/S0013-4686(02)00161-5
  23. J. Kelber, S. Rudenja and C. Bjelkevig: Electrochim. Acta, 51 (2006) 3086. https://doi.org/10.1016/j.electacta.2005.08.043
  24. Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen and S. Y. Guo: Electrochim. Acta, 56 (2011) 2627. https://doi.org/10.1016/j.electacta.2010.12.001
  25. R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert and V. Consonni: J. Phys. Chem. C, 120 (2016) 5242. https://doi.org/10.1021/acs.jpcc.6b00479