Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.3.231

The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications  

Kim, Dong Yeon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Jeong, Young-Min (Smart Textile Convergence Research Group, DGIST)
Baek, Seong-Ho (Smart Textile Convergence Research Group, DGIST)
Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Publication Information
Journal of Powder Materials / v.26, no.3, 2019 , pp. 231-236 More about this Journal
Abstract
Ni hydroxides ($Ni(OH)_2$) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the $Ni(OH)_2$ structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based $OH^-$ in the solution; thus, the growth rate and morphological structure of $Ni(OH)_2$ are influenced by HMT concentration. When $Ni(OH)_2$ is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, $Ni(OH)_2$ is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed $Ni(OH)_2$ grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the $Ni(OH)_2$ electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.
Keywords
Pseudocapacitor; Nickel hydroxide; Electrodeposition; Hexamethylenetetramine; Cathodic current;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang: Nat. Commun., 4 (2013) 1894.   DOI
2 H. Wang, H. S. Casalongue, Y. Liang and H. Dai: J. Am. Chem. Soc., 132 (2010) 7472.   DOI
3 H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia: Nanoscale, 5 (2013) 8879.   DOI
4 C. Hou, X.-Y. Lang, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li, W.-T. Zheng, J.-S. Lian and Q. Jiang: J. Mater. Chem. A, 3 (2015) 23412.   DOI
5 H. Jiang, T. Zhao, C. Li and J. Ma: J. Mater. Chem., 21 (2011) 3818.   DOI
6 S. E. Moosavifard, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner and M. F. Mousavi: ACS Appl. Mater. Interfaces, 7 (2015) 4851.   DOI
7 M. Huang, F. Li, F. Dong, Y. X. Zhang and L. L. Zhang: J. Mater. Chem. A, 3 (2015) 21380.   DOI
8 V. Subramanian, H. Zhu and B. Wei: J. Power Sources, 159 (2006) 361.   DOI
9 K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak: Chem. Phys. Lett., 347 (2001) 36.   DOI
10 T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu and C.-C. Hu: Adv. Mater., 22 (2010) 347.   DOI
11 A. Pendashteh, M. F. Mousavi and M. S. Rahmanifar: Electrochim. Acta, 88 (2013) 347.   DOI
12 W. Chen, C. Xia and H. N. Alshareef: ACS Nano, 8 (2014) 9531.   DOI
13 R. Orinakova, A. Turonova, D. Kladekova, M. Galova and R. M. Smith: J. Appl. Electrochem., 36 (2006) 957.   DOI
14 L. Feng, Y. Zhu, H. Ding and C. Ni: J. Power Sources, 267 (2014) 430.   DOI
15 G.-W. Yang, C.-L. Xu and H.-L. Li: Chem. Commun., 48 (2008) 6537.
16 G.-R. Fu, Z.-A. Hu, L.-J. Xie, X.-Q. Jin, Y.-L. Xie, Y.-X. Wang, Z.-Y. Zhang, Y.-Y. Yang and H.-Y. Wu: Int. J. Electrochem. Sci., 4 (2009) 1052.
17 S. Kim, K. Park and K-I. Jung: J. Korean Powder Metall. Inst., 23 (2016) 311.   DOI
18 T. Priyadharshini, B. Saravanakumar, G. Ravi, A. Sakunthala and R. Yuvakkumar: J. Nanosci. Nanotechnol., 18 (2018) 4093.   DOI
19 J. Xu, T. Chen, X. Wang, B. Xue and Y.-X. Li: Catal. Sci. Technol., 4 (2014) 2126.   DOI
20 V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella and S. Mirabella: J. Phys. Chem. C, 118 (2014) 28189.   DOI
21 X. Gao, X. Li and W. Yu: J. Phys. Chem. B, 109 (2005) 1155.   DOI
22 D. Grujicic and B. Pesic: Electrochim. Acta, 47 (2002) 2901.   DOI
23 J. Kelber, S. Rudenja and C. Bjelkevig: Electrochim. Acta, 51 (2006) 3086.   DOI
24 Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen and S. Y. Guo: Electrochim. Acta, 56 (2011) 2627.   DOI
25 R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert and V. Consonni: J. Phys. Chem. C, 120 (2016) 5242.   DOI