• 제목/요약/키워드: Conjugate Gradient method

검색결과 218건 처리시간 0.022초

Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure

  • Naseralavi, S.S.;Shojaee, S.;Ahmadi, M.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.839-864
    • /
    • 2016
  • This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference between the recorded acceleration of a real damaged structure and a hypothetical damaged one. This is performed by updating physical parameters (module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate gradient (M-NCG) and modified Broyden-Fletcher-Goldfarb-Shanno algorithm (M-BFGS) separately. These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection problem. Three illustrative test examples are considered to assess the performance of the proposed method. Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of structural damage in presence of noise.

Parallel Algorithm of Conjugate Gradient Solver using OpenGL Compute Shader

  • Va, Hongly;Lee, Do-keyong;Hong, Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2021
  • OpenGL compute shader는 다른 shader 단계와 다르게 동작하며, 병렬로 모든 데이터를 계산하는데 사용할 수 있다. 본 논문은 OpenGL compute shader에서 반복 켤레 기울기 방법을 통해 희소선형 시스템을 계산하기 위한 GPU 기반의 병렬 알고리즘 제안하였다. 제안된 희소 선형 해결 방법은 대칭인 양의 정부호 행렬과 같은 대형 선형 시스템을 해결하기 위해 사용된다. 본 논문은 이 알고리즘을 사용하여 매트릭스 형식이 다른 8가지 예제들에 대해서 CPU와 GPU를 기반으로한 성능 비교 결과를 제공한다. 본 논문은 4가지 잘 알려져 있는 매트릭스 형식(Dense, COO, ELL and CSR)을 매트릭스 저장소를 사용하였다. 8개의 희소 매트릭스를 사용한 성능 비교 실험에서 GPU 기반 선형 해결 시스템이 CPU 기반 선형 해결 시스템보다 훨씬 빠르며, GPU 기반에서 0.64ms, CPU 기반에서 15.37ms의 평균 컴퓨팅 시간을 제공한다.

The Mixed Finite Element Analysis for Saturated Porous Media using FETI Method

  • Lee, Kyung-Jae;Tak, Moon-Ho;Park, Tae-Hyo
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.693-702
    • /
    • 2010
  • In this paper, FETI(Finite Element Tearing and Interconnecting) method is introduced in order to improve numerical efficiency of Staggered method. The porous media theory, the Staggered method and the FETI method are briefly introduced in this paper. In addition, we account for the MPI(Message Passing Interface) library for parallel analysis, and the proposed combined Staggered method with FETI method. Finally Lagrange multipliers and CG(Conjugate Gradient) algorithm to solve decomposed domain are proposed, and then the proposed method is verified to be numerically efficient by MPI library.

Bi-CGSTAB 해법에 의한 복합격자망 해석방법에 관한 연구 (A Study on Multi-Block Technique by Bi-CGSTAB Solver)

  • 배진효;이재헌
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2611-2625
    • /
    • 1996
  • A numerical method on multi-block technique by Bi-CGSTAB(Bi-Conjugate Gradient STABilized) solver has been proposed. The present multi-block technique can reduce the numerical manipulation greatly because the common regions at the interface of each block are not necessary. In order to test the computational performance of present multi-block technique, the flow characteristics in a T type duct system and a N type duct system have been investigated by three kinds of methods such as the single-block method, the previous multi-block technique and the multi-block technique with Bi-CGSTAB solver. The results indicated that the required CPU time by present multi block technique was shorter than that of other two numerical methods and the convergency history was shown very stable at the present multi-block technique.

A New Blind Beamforming Procedure Based on the Conjugate Gradient Method for CDMA Mobile Communications

  • Shin, Eung-Soon;Choi, Seung-Won;Shim, Dong-Hee;Kyeong, Mun-Geon;Chang, Kyung-Hi;Park, Youn-Ok;Han, Ki-Chul;Lee, Chung-Kun
    • ETRI Journal
    • /
    • 제20권2호
    • /
    • pp.133-148
    • /
    • 1998
  • The objective of this paper is to present an adaptive algorithm for computing the weight vector which provides a beam pattern having its maximum gain along the direction of the mobile target signal source in the presence of interfering signals within a cell. The conjugate gradient method (CGM) is modified in such a way that the suboptimal weight vector is produced with the computational load of O(16N), which has been found to be small enough for the real-time processing of signals in most land mobile communications with the digital signal processor (DSP) off the shelf, where N denotes the number of antenna elements of the array. The adaptive procedure proposed in this paper is applied to code division multiple access (CDMA) mobile communication system to show its excellent performance in terms of signal to interference plus noise ratio (SINR), bit error rate (BER), and capacity, which are enhanced by about 7 dB, ${\frac{1}{100}}$ times, and 7 times, respectively, when the number of antenna elements is 6 and the processing gain is 20 dB.

  • PDF

Implementation and Experiments of Sparse Matrix Data Structure for Heat Conduction Equations

  • Kim, Jae-Gu;Lee, Ju-Hee;Park, Geun-Duk
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권12호
    • /
    • pp.67-74
    • /
    • 2015
  • The heat conduction equation, a type of a Poisson equation which can be applied in various areas of engineering is calculating its value with the iteration method in general. The equation which had difference discretization of the heat conduction equation is the simultaneous equation, and each line has the characteristic of expressing in sparse matrix of the equivalent number of none-zero elements with neighboring grids. In this paper, we propose a data structure for sparse matrix that can calculate the value faster with less memory use calculate the heat conduction equation. To verify whether the proposed data structure efficiently calculates the value compared to the other sparse matrix representations, we apply the representative iteration method, CG (Conjugate Gradient), and presents experiment results of time consumed to get values, calculation time of each step and relevant time consumption ratio, and memory usage amount. The results of this experiment could be used to estimate main elements of calculating the value of the general heat conduction equation, such as time consumed, the memory usage amount.

NONCONFORMING SPECTRAL ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS

  • Kumar, N. Kishore
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.761-781
    • /
    • 2014
  • An exponentially accurate nonconforming spectral element method for elasticity systems with discontinuities in the coefficients and the flux across the interface is proposed in this paper. The method is least-squares spectral element method. The jump in the flux across the interface is incorporated (in appropriate Sobolev norm) in the functional to be minimized. The interface is resolved exactly using blending elements. The solution is obtained by the preconditioned conjugate gradient method. The numerical solution for different examples with discontinuous coefficients and non-homogeneous jump in the flux across the interface are presented to show the efficiency of the proposed method.

최적화기법을 이용한 익형의 역설계 (Inverse Design For a Airfoil Using Optimizing Method)

  • 김종섭;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.126-130
    • /
    • 1997
  • A new and efficient method is presented for design optimization, which is based on a computational fluid dynamics (CFD). The method is applied to design an airfoil configuration. The Navier-Stokes equations are solved for the viscous analysis of the flow, which provides the object function. The CFD analysis is then coupled with the optimization procedure that used a conjugate gradient method. During the one-dimensional search of the optimization procedure, an approximate flow analysis based on a first-order Taylor series expansion is used to reduce the computational cost, (This study is supported by Korean Ministry of Education through Research Fund)

  • PDF

삼중대각행렬 시스템 풀이의 빠른 GPU 구현 (Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems)

  • 김영희;이성기
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제32권11_12호
    • /
    • pp.692-704
    • /
    • 2005
  • 컴퓨터 하드웨어의 급속한 발전으로 그래픽 프로세서 유닛(Graphics Processor Units : GPUs)은 굉장한 메모리 대역폭과 산술 능역을 보유하게 되어 범용 계산에 많이 활용되고 있으며, 특히 계산 집약적인 물리 기반 시뮬레이션(physics based simulation)의 GPU 구현이 활발하게 연구되고 있다. 물리 기반 시뮬레이션의 기본이 되는 미분방정식 풀이 과정에서 삼중대각행렬(tridiagonal matrix) 시스템은 유한차분(finite-difference) 근사에 의해서 자주 나타나는 선형시스템으로 물리 기반 시뮬레이션 관점에서 삼중대각행렬 시스템의 빠른 풀이는 중요한 연구 분야이다. 본 논문에서는 GPU에서 삼중대각행렬 시스템 풀이를 빠르게 구현할 수 있는 방법을 제안한다. 벡터 프로세서(vector processor) 계산에서 삼중대각행렬 시스템 풀이 방법으로 널리 사용되는 cyclic reduction 또는 odd-even reduction 알고리즘을 GPU에서 구현하였다. 본 논문에서 제안한 방법을 삼중대각행렬 시스템 풀이 방법으로 잘 알려져 있는 Thomas 방법과 GPU를 이용한 선형시스템 풀이에서 좋은 성과를 보이고 있는 conjugate gradient 방법과 비교할 때 상당한 성능 향상을 얻을 수 있었다. 또한, 열전도(heat conduction) 방정식, 이류 확산(advection-diffusion) 방정식, 얕은 물(shallow water) 방정식에 의한 물리 기반 시뮬레이션의 GPU 구현에 본 논문에서 제안한 방법을 사용하여 1024x1024 격자의 계산 영역에서 초당 35프레임 이상의 놀라운 성능을 보여주었다.

에너지 감쇠역을 포함하는 파랑장에 대한 반복기법의 적용 (Application of Iterative Procedure to the wave Field with Energy Dissipation Area)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.120-127
    • /
    • 1998
  • An Elliptic model for calculating the combined refraction/diffraction of monochromatic linear waves is developed, including a term which allows for the dissipation of wave energy. Conjugate gradient method is employed as a solution technique. Wave height variations are calculated for localized circular and rectangular dissipation areas. It is shown that the numerical results agree very well with analytical solution in the case of circular damping region. The localized dissipation area creates a shadow region of low wave energy and the recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF