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NONCONFORMING SPECTRAL ELEMENT METHOD FOR

ELASTICITY INTERFACE PROBLEMS

N. KISHORE KUMAR

Abstract. An exponentially accurate nonconforming spectral element me-

-thod for elasticity systems with discontinuities in the coefficients and the
flux across the interface is proposed in this paper. The method is least-
squares spectral element method. The jump in the flux across the interface
is incorporated (in appropriate Sobolev norm) in the functional to be min-

imized. The interface is resolved exactly using blending elements. The so-
lution is obtained by the preconditioned conjugate gradient method. The
numerical solution for different examples with discontinuous coefficients

and non-homogeneous jump in the flux across the interface are presented
to show the efficiency of the proposed method.
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1. Introduction

The elliptic interface problems arises in many engineering problems, for ex-
ample, in heat conduction or elasticity problems where the domain of definition
is composed of different materials. In this paper we study the nonconforming
spectral element method for elasticity interface problems. These problems have
wide applications in continuum mechanics, multi-phase elasticity problems, etc.

There exists several methods in the literature to solve elliptic interface prob-
lems (see [26]). There are two types of finite element methods for elliptic inter-
face problems: fitted and unfitted finite element methods. Fitted finite element
method is a common approach where the mesh is fitted to the interface, so the
interface conditions are satisfied in the weak formulation. The interface is ap-
proximated by the sides of isoparametric elements in the discretization. The
accuracy of the method depends on the approximation quality of the interface.
In this case, the method converges with optimal rates in h. If the mesh is not
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fitted to the interface, suboptimal convergence behavior will occur or may be the
method does not converge at all. To avoid this difficulty, in [2] Babuska have
formulated an equivalent minimization problem with all boundary and jump
conditions incorporated in the cost functions.

Unfitted finite element methods are based on a mesh which is independent
of interface. In [3] unfitted finite element method based on penalized problem
as in [2] has been proposed. With an appropriate choice of penalty term the
approximation converges to the solution at optimal rate (in h) in H1 norm.
Only lower order finite elements have been studied in the literature (for more
details see [27]). In [27], a conforming higher order finite element method has
been analyzed for elliptic interface problems. One can also look for different
formats of finite element methods for interface problems in [24, 33, 35, 41].
Many nonconforming approaches are available in the literature like discontinuous
Galerkin methods, Mortar finite element methods, etc (see [26]). In [8] a priori
and a posteriori error estimates have been derived for discontinuous Galerkin
method. Quasi optimal a priori estimates for interface problems even with lower
smoothness conditions on the solution were derived.

This problem is also studied in the framework of least-squares finite element
method [4, 5, 6, 11]. In these formulations, the given differential equation is
converted into first order partial differential system and a suitable least-squares
formulation is applied. Optimal convergence rates in h have been shown. The
first order system least-squares method (FOSLS) for linear elasticity problems
has been proposed in [9, 10]. Least-squares spectral element method has been
proposed in [19, 20]. In [31, 32] iterative substructuring methods for spectral
element discretizations of elliptic systems have been proposed. The method
provides an efficient preconditioner with an optimal condition number. The
extended finite element method (XFEM) or generalized finite element method
(GFEM) is a useful method for approximating the solutions with singularities
and solutions of interface problems. This method extends the FEM approach by
enriching the solution space. The approximation consists of standard finite ele-
ment approximation and the enrichment through the partition of unity concepts
[17, 18].

Immersed interface method has been widely studied for elliptic interface prob-
lems [28]. Finite difference based explicit jump immersed interface method for
elasticity systems was described in [25]. An immersed finite element method
for elasticity equations with interfaces has been studied in [29, 39, 40]. In this
method the mesh is independent of the interface and basis functions are chosen
such that they satisfies the interface conditions. Optimal convergence rates in
h have been derived. In [30], linear and bilinear immersed finite elements for
planar elasticity interface problems have been discussed. 2D linear, bilinear im-
mersed finite elements which satisfy the interface jump conditions were used.
Optimal convergence rates in h were shown in L2 and semi H1 norms. Details
and complete citation list on immersed finite element methods can be found in
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[38]. In [12] an adaptive immersed interface finite element method for elasticity
interface problem was presented.

In [22] Nitsche’s method has been described. In [23] a finite element solution
of elliptic interface problem using an approach due to Nitsche has been pro-
posed. The method allows for discontinuities, internal to the elements, in the
approximation across the interface and it was shown to be second order accurate
(in h) in L2 norm. In this method the interface conditions are satisfied weakly
by means of variant of Nitsche’s method. A hp Nitsche’s method for interface
problems with nonconforming unstructured finite element meshes have been pro-
posed and error estimates with optimal bound in h and suboptimal bound in p
by degree p1/2 were obtained in [13].

In this paper, we propose a least-squares spectral element method for elasticity
interface problems based on the method proposed in [26]. In the least-squares
formulation of the method, a solution is sought which minimizes the sum of the
squares of a squared norms of the residuals in the partial differential equation
and the sum of the residuals in the boundary conditions in fractional Sobolev
norms and the sum of the jumps in the displacement and the flux across the
interface in appropriate fractional Sobolev norms and enforce the continuity
along the inter element boundaries by adding a term which measures the sum of
the squares of the jump in the function and its derivatives in fractional Sobolev
norms. The proposed numerical formulation is based on the regularity estimate
for the interface problems stated in [7] and the stability estimate proved in [26].

This method is nonconforming (in terms of approximation). This formulation
is different from the standard techniques in LSFEM used to convert the second
order elliptic equations into first order system. The interface is resolved com-
pletely using blending elements [21]. Higher order spectral elements are used to
approximate the solution. The spectral elements are the sum of tensor prod-
ucts of the polynomials of degree W in each variable. The solution is obtained
using preconditioned conjugate gradient method (PCGM) without storing the
stiffness matrix and load vector. Even though we do not store the matrix, the
added advantage of the proposed method is the resulting stiffness matrix is sym-
metric and positive definite. The integrals involved in the residual computations
are obtained efficiently and inexpensively [36] (a brief description is given in the
Appendix).

The rest of the paper is organized as follows: In Section 2 the elasticity
interface problem is defined. The discretization of the domain is given in Section
3 and the numerical scheme is described. Finally in Section 4 numerical results
are presented for various examples.

2. Elasticity interface problem

In this section we state the elasticity interface problem on a domain Ω ⊆ R2.
First we define the function spaces which we need in the latter sections.

Denoting Hk(Ω), the usual Sobolev space of integer order k with the norm
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∥.∥k,Ω as given below,

∥u(x, y)∥2k,Ω =

∫
Ω

∑
α1+α2≤k

∣∣∂α1
x ∂α2

y u(x, y)
∣∣2 dx dy.

Further, let

∥u∥2s,J =

∫
J

u2(x)dx+

∫
J

∫
J

|u(x)− u(x′)|2

|x− x′|1+2s dx dx′,

denote the fractional Sobolev norm of order s, where 0 < s < 1. Here J denotes
an interval contained in R.

We denote vectors and vector spaces by bold characters. For example, u =
(u1, u2)

T , Hk(Ω) = Hk(Ω) × Hk(Ω), etc. The norms are given by ∥u∥2k,Ω =

∥u1∥2k,Ω + ∥u2∥2k,Ω for u ∈ Hk(Ω), ∥u∥2s,J = ∥u1∥2s,J + ∥u2∥2s,J , etc.

2.1. Linear elasticity system. Let x = (x, y) be a point in space, u =
(u1(x, y), u2(x, y))

T be the displacement vector and ϵ = (ϵij) be the strain ten-
sor. If u1, u2 are the two planar displacement components, then the strain-
displacement relation is given by

ϵ11 =
∂u1

∂x
, ϵ22 =

∂u2

∂y
, ϵ12 = ϵ21 =

1

2

(
∂u1

∂y
+

∂u2

∂x

)
.

The relation between stresses and strains (from the Hooke’s law) is given by,

σij = λ(▽.u)δij + 2µεij(u), i, j = 1, 2, (1)

where λ and µ are the Lame coefficients, and

δij =

{
1, i = j
0, i ̸= j

, ▽.u =
∂u1

∂x
+

∂u2

∂y
.

Let σ = (σij) be the stress tensor, f(x) = (f1, f2)
T be the applied body forces,

then the stress tensor satisfies the following partial differential equations,

−▽ .σ = f , i.e,

{
−∂σ11

∂x − ∂σ12

∂y = f1
−∂σ21

∂x − ∂σ22

∂y = f2.
(2)

From the above equations, we can re-write the above system as the system of
plane elasticity equations of the following,

L1u =−
{
(λ+ 2µ)

∂2u1

∂x2
+ (λ+ µ)

∂2u2

∂x∂y
+ µ

∂2u1

∂y2

}
= f1,

L2u =−
{
(λ+ 2µ)

∂2u2

∂y2
+ (λ+ µ)

∂2u1

∂x∂y
+ µ

∂2u2

∂x2

}
= f2.

(3)

The Lame coefficients λ and µ are given by

µ =
E

2(1 + ν)
, λ =

νE

(1− 2ν)(1 + ν)
(plane strain),λ =

νE

(1− ν2)
(plane stress) (4)
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where E is the Young’s modulus and ν is the Poisson’s ratio. Let us assume
that the constants λ and µ have finite jumps across the interface; so does the
flux σn. Now the elasticity interface problem is defined below.

2.2. The interface problem. Let Ω and Ω1(Ω1 ⊂ Ω) be open bounded do-
mains with boundaries ∂Ω = Γ (Ω̄ = Ω ∪ ∂Ω) and Γ0 respectively. Assume
that the boundary Γ0 is sufficiently smooth. Further, let Ω2 = Ω \ Ω1. Let
u1 = (u1

1, u
1
2)

T = u |Ω1 and u2 = (u2
1, u

2
2)

T = u |Ω2 . Now the elasticity inter-
face problem can be written as follows:

Lu = f in Ω1 ∪ Ω2

[u] = 0 on Γ0

[σn] = q,

u = g on Γ

(5)

where Lu = (L1u,L2u)
T , f = (f1, f2)

T , q = (q1, q2)
T , g = (g1, g2)

T are known
vector functions. n is the unit outward normal to the interface Γ0. The jump [.]
is defined as the difference of the limiting values from the outside of the interface
to the inside. The coefficients λ and µ are piecewise constant, i.e.,

λ =

{
λ1 in Ω1

λ2 in Ω2

and µ =

{
µ1 in Ω1

µ2 in Ω2

. (6)

3. Discretization and Numerical Scheme

Considered the circular domain Ω1 such that Ω1 ⊂ Ω, where Ω is square whose
boundary is Γ = ∪4

i=1Γ
i as shown in Figure 1, for brevity. Let Ω2 = Ω \Ω1 and

the interface is Γ0 which is smooth as shown in Figure 1. The results presented
are applicable to arbitrary smooth interfaces also.

Now the domain Ω1 and Ω2 are partitioned into finite number of quadrilateral
subdomains (elements) Ω1

1,Ω
2
1, ...,Ω

p
1 and Ω1

2,Ω
2
2, ...,Ω

q
2 such that the subdomain

divisions match on the interface. The interface is completely resolved using
blending elements [21].
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2pq

1

Ω

1

1

Figure 1. The domain Ω and discretization.
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Each element is mapped to the master square S = (−1, 1)2. Define an analytic
map M l

i from the master square S = (−1, 1)2 to Ωl
i by (see [1, 21])

x = X l
i(ξ, η), y = Y l

i (ξ, η), i = 1, 2.

A brief description of the map is given in the Appendix A1. Here and in the
rest of this section l = 1, ..., p for i = 1 and l = 1, ..., q for i = 2.

Define the spectral element functions 1
{
ũi,l
1

}
,
{
ũi,l
2

}
as the tensor product of

polynomials of degree W in each variable ξ and η as

ũi,l
1 (ξ, η) =

W∑
r=0

W∑
s=0

gi,lr,sξ
rηs and ũi,l

2 (ξ, η) =
W∑
r=0

W∑
s=0

hi,l
r,sξ

rηs for i = 1, 2.

Then 2
{
ui,l
1

}
,
{
ui,l
2

}
are given by

ui,l
1 (x, y) = ũi,l

1

(
(M l

i )
−1
)

and ui,l
2 (x, y) = ũi,l

2

(
(M l

i )
−1
)
.

Now ∫
Ωl

i

∣∣Lul
i

∣∣2 dxdy =

∫
S

∣∣Lũl
i

∣∣2 J l
i dξdη for i = 1, 2.

Here J l
i (ξ, η) is the Jacobian of the mapping M l

i from S to Ωl
i.

Define 3Ll
i(ξ, η) = L(ξ, η)

√
J l
i (the differential operator in the transformed co-

ordinates in the domains Ω1 and Ω2 respectively). Then∫
Ωl

i

∣∣Lul
i

∣∣2 dxdy =

∫
S

∣∣Ll
iũ

l
i

∣∣2 dξdη for i = 1, 2.

Define f1 = (f1
1 , f

1
2 )

T = f |Ω1 and f2 = (f2
1 , f

2
2 )

T = f |Ω2 . Let f li (ξ, η) =
fi(M

l
i (ξ, η)) for i = 1, 2. Define 4

Fl
i(ξ, η)= f li (ξ, η)

√
J l
i (ξ, η) for i = 1, 2.

Let γs be a side common to the two adjacent elements Ωm
i and Ωn

i , i = 1, 2
(as shown in Fig. 2(a) for i = 2). Assume that γs is the image of η = −1 under
the mapping Mm

i which maps S to Ωm
i and also the image of η = 1 under the

mapping Mn
i which maps S to Ωn

i . By chain rule

(um
i )x = (ũm

i )ξ ξx + (ũm
i )η ηx and (um

i )y = (ũm
i )ξ ξy + (ũm

i )η ηy.

1The displacement components in the transformed coordinates, where i gives the domain
status (Ω1 or Ω2) and l gives the number of the element in that domain.

2ul
i = (ui,l

1 , ui,l
2 ) is vector u in element Ωl

i
3Ll

iũ
l
i = (Li,l

1 ũl
i,L

i,l
2 ũl

i)
4Fl

i = (F i,l
1 , F i,l

2 )
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(a) (b) Along the interface Inter element boundary

Figure 2. Elements with common edges

Then the jumps along the inter-element boundaries are defined as

∥[ui]∥20,γs = ∥ũm
i (ξ,−1)− ũn

i (ξ, 1)∥
2

0,I
,

∥[(ui)x]∥2
1/2,γs

= ∥(um
i )x(ξ,−1)− (un

i )x(ξ, 1)∥
2

1/2,I
,

∥[(ui)y]∥2
1/2,γs

= ∥(um
i )y(ξ,−1)− (un

i )y(ξ, 1)∥
2

1/2,I
.

Here and in what follows, I is an interval (−1, 1).
As the division of the domain into subdomains match along the interface,

we define the jump across the interface by taking it (a part of interface) as the
common edge. Consider the elements Ωn

1 and Ωm
2 (as shown in Fig. 2(b)) which

have the common edge γs ⊆ Γ0. Let γs be the image of ξ = 1 under the mapping
Mn

1 which maps S to Ωn
1 and also the image of ξ = −1 under the mapping Mm

2

which maps S to Ωm
2 . Define

∥[u]∥23
2 ,γs

= ∥u2 − u1∥23
2 ,γs

= ∥ũm
2 (−1, η)− ũn

1 (1, η)∥
2

0,I
+

∥∥∥∥∂ũm
2

∂T
(−1, η)− ∂ũn

1

∂T
(1, η)

∥∥∥∥2
1/2,I

,

where ∂ũ1

∂T and ∂ũ2

∂T are the tangential derivatives of ũ1 and ũ2 respectively.

Now along the boundary Γ = ∪4
j=1Γ

j , let γs ⊆ Γj (for some j) be the image
of ξ = 1 under the mapping Mm

2 which maps S to Ωm
2 . Then

∥u2∥20,γs
+

∥∥∥∥∂u2

∂T

∥∥∥∥2
1/2,γs

= ∥ũm
2 (1, η)∥20,I +

∥∥∥∥∂ũm
2

∂T
(1, η)

∥∥∥∥2
1/2,I

.

As defined earlier u1 = u |Ω1 and u2 = u |Ω2 , so the boundary condition
u = g on Γ in the discrete form will be u2 = g on Γj ∩∂Ωm

2 . Let Γj ∩∂Ωm
2 = cm2

be the image of the mapping Mm
2 of S onto Ωm

2 corresponding to the side ξ = 1
and

om
2 (η) = g(Mm

2 (1, η)),

where −1 ≤ η ≤ 1.
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On the interface Γ0 we have [u] = 0 and [σn] = q. Let γs ⊆ Γ0 be the image
of ξ = 1 under the mapping Mn

1 which maps S to Ωn
1 and also the image of

ξ = −1 under the mapping Mm
2 which maps S to Ωm

2 . Let

lm,n
1 (η) = q(−1, η) = q(1, η) for − 1 ≤ η ≤ 1.

Let
{{

ũk
1(ξ, η)

}
k
,
{
ũl

2(ξ, η)
}
l

}
∈ ΠW , the space of spectral element functions.

Define the functional

rW
({

ũk
1(ξ, η)

}
k
,
{
ũl

2(ξ, η)
}
l

)
=

p∑
k=1

∥∥(Lk
1)ũ

k
1(ξ, η)− Fk

1(ξ, η)
∥∥2

0,S
+

q∑
l=1

∥∥(Ll
2)ũ

l
2(ξ, η)− Fk

2(ξ, η)
∥∥2

0,S

+
2∑

i=1

∑
γs⊆Ωi

(
∥[ui]∥20,γs + ∥[(ui)x]∥2

1/2,γs
+ ∥[(ui)y]∥2

1/2,γs

)
(7)

+
∑

γs⊆Γ0

(
∥[u]∥2

3/2,γs
+ ∥[σn]− lm,n

1 ∥21/2,γs

)

+
∑
γs⊆Γ

(
∥u2 − om

2 (η)∥20,γs
+

∥∥∥∥(∂u2

∂T

)
−
(
∂om

2

∂T

)∥∥∥∥2
1/2,γs

)
.

The approximate solution is chosen as the unique
{{

z̃k1(ξ, η)
}
k
,
{
z̃l

2(ξ, η)
}
l

}
∈

ΠW , which minimizes the functional r
W

(
{
ũk
1(ξ, η)

}
k
,
{
ũl

2(ξ, η)
}
l
) over all{{

ũk
1(ξ, η)

}
k
,
{
ũl

2(ξ, η)
}
l

}
.

The minimization problem leads to a symmetric and positive definite lin-
ear system AZ = b. Where Z be a vector assembled from the values of{{

z̃k1(ξ, η)
}
k
,
{
z̃l

2(ξ, η)
}
l

}
at the Gauss-Lobatto-Legendre points arranged in

lexicographic order for 1 ≤ k ≤ p, 1 ≤ l ≤ q. The solution is obtained by
preconditioned conjugate gradient method. The action of a matrix on a vector
in each iteration is obtained efficiently and inexpensively without storing the
matrix A (since PCGM requires the action of a matrix on a vector). The details
are shown in Appendix A2.

We used a preconditioner which was proposed in [15]. The preconditioner5 is
block diagonal matrix, where each diagonal block corresponds to the H2 norm of
the spectral element function representation of each component of the vector on
a particular element which is mapped onto the master square S. The obtained
solution of the preconditioned system is nonconforming. A set of corrections are
made to the solution so that the corrected solution is conforming (see A3).

Let u be the exact solution and z be the approximate solution which is con-
forming. Let e = u − z. Then for W large enough we have the following error
estimate H1 norm (since the jump in displacement across the interface is zero,

5
p∑

k=1

∥∥ũk
1

∥∥2
2,S

+

q∑
l=1

∥∥ũl
2

∥∥2
2,S

.



Nonconforming Spectral element method for elasticity interface problems 769

u ∈ H1(Ω))

∥e∥1,Ω = ∥u− z∥1,Ω ≤ C e−bW

holds, where C and b are constants. Proof is very similar to the one proven in
[26].

4. Numerical Results

To prove the effectiveness of the method we present the numerical results
for the problem defined in Section 3. The relative error ∥e∥ER is defined as

∥e∥ER=
∥e∥1,Ω
∥u∥1,Ω

. In all the examples, degree of the approximation polynomial is

denoted by 6 W, ’DOF’ means the number of degrees of freedom and ’Iters’ means
the total number of iterations required to compute the solution using PCGM.
We have used the relative residual norm as a stopping criteria in PCGM. That

is, the iteration process is stopped when the relative residual norm
∥ri∥2
∥b∥2

(ri is

the residual in ith iteration, ∥.∥2 is vector norm) is less than the tolerance ϵ.

Example 1. Interface problem with homogeneous jump conditions:
Consider the linear elasticity interface problem (5) (plane strain, see (4)) stated
in Section 2 on a square domain [−0.75, 0.75]2 with a circle centered at the origin
of radius s as the interface as shown in Fig. 1. The coefficients λ, µ are given by

λ1 = µ1 = 1 if r ≤ s

λ2 = µ2 = b if r > s.
(8)

Chosen the data such that the given interface problem has the exact solution
u = (u1, u2)

u1 = u2 =

{
r2 r ≤ s
r2

b + (1− 1
b )s

2 r > s,

where r =
√
x2 + y2. Here we choose the radius of the circle s = 1

2 . Note that
the solution u satisfies homogeneous jump conditions across the interface.

This problem have been studied in [39]. We discretized the domain into 9
quadrilateral elements as shown in Fig. 1. The conforming numerical solution
has been obtained for various values of b (see (8)) for different degree of the
approximating polynomial W. The relative error ∥e∥ER in percent, the iterations
are tabulated for different values of b (see (8)) in Table 1 and Table 2.

For smaller values of b (see (8)) the iteration count is less but the iteration
count is large when b is large. More efficient preconditioner is under investigation.
The log of relative error against the degree of the approximating polynomial W
is drawn in Fig. 3 for b = 50, 100. The relation is almost linear. This shows
the exponential accuracy of the method. The error decays exponentially for all
values of b.

6For the simplicity of the programming W is assumed to be uniform in all elements.
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Table 1. The relative error in percent and iterations for dif-
ferent W

b = 5 b = 10
W DOF ∥e∥ER % Iters ∥e∥ER % Iters
2 162 1.63229E+01 19 2.534144E+01 28
3 288 3.820257E-00 63 2.926786E-00 85
4 450 2.897170E-01 93 3.201887E-01 123
5 648 5.828495E-02 185 6.129304E-02 262
6 882 2.468277E-03 225 1.844171E-03 342
7 1152 2.818127E-04 318 4.349615E-04 490
8 1458 2.885878E-05 370 2.411179E-05 620
9 1800 2.842893E-06 441 2.780419E-06 768

Table 2. The relative error in percent and iterations for dif-
ferent W

b = 50 b = 100
W DOF ∥e∥ER % Iters ∥e∥ER % Iters
2 162 4.72332E+01 42 4.9527E+01 60
3 288 2.735828E-00 150 2.38944E-00 223
4 450 2.707493E-01 193 2.01159E-01 405
5 648 3.331489E-02 622 2.92799E-02 767
6 882 2.134931E-03 959 3.03820E-03 1435
7 1152 2.632882E-04 1468 2.63029E-04 2246
8 1458 2.824413E-05 1908 1.57197E-05 3061
9 1800 2.885666E-06 2557 2.94435E-06 4290

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 2  3  4  5  6  7  8  9

LO
G
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F

 T
H

E
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E
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T
IV

E
 E

R
R
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Figure 3. Log of the relative error against W for b = 50, 100
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Example 2. Interface problem with nonhomogeneous jump in the flux:
Consider the linear elasticity problem as defined in (5) (plane strain problem)
on the same domain as considered in Example 1 with a circle centered at the
origin of radius s as the interface. The coefficients λ, µ are given by

λ1 = µ1 = 1 if r ≤ s and λ2 = µ2 = b if r > s.

Chosen the data such that the given interface problem has the exact solution
u = (u1, u2)

u1 = u2 =

{
r2 + log(1 + r2), r ≤ s
r2

b/2 + (1− 1
b/2 )s

2 + log(1+r2)
b + (1− 1

b ) log(1 + s2), r > s,

where r =
√
x2 + y2. Here we choose the radius of the circle s = 1

2 .

Table 3. The relative error in percent and iterations for dif-
ferent W

b = 10 b = 0.1
W DOF ∥e∥ER % Iters ∥e∥ER % Iters
2 162 3.133049E+01 23 1.79670E+01 21
3 288 3.876138E-00 69 2.85257E-00 51
4 450 3.218966E-01 124 6.62517E-01 117
5 648 8.120330E-02 250 1.77620E-01 147
6 882 1.075311E-02 317 1.58008E-02 232
7 1152 6.768839E-03 406 7.64950E-03 287
8 1458 1.106595E-03 529 1.08173E-03 301
9 1800 6.699847E-04 640 4.80593E-04 330
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Figure 4. Log of the relative error against W for b = 0.1, 10

For any b, the solution u is continuous across the interface and [σn] = q =
(q1, q2),
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q1 =
2(3x2 + 2xy + y2)√

x2 + y2
, q2 =

2(3y2 + 2xy + x2)√
x2 + y2

.

The domain is discretized as in the above example and the conforming solution
is obtained for b=10, 0.1. The relative error ∥e∥ER in percent, the iterations are
tabulated in Table 3. The log of relative error against W is drawn in Fig. 4 for
b = 10, 0.1. Here one can see that the iteration count is large compared to the
count in previous example (look at Table 1 for b = 10).

5. Conclusions

The proposed method is nonconforming and exponentially accurate. The
interface is resolved exactly using blending elements. A small data has to be
interchanged in between the elements for each iteration of the PCGM and the
residuals in the normal equations can be obtained efficiently and inexpensively.
The proposed method is efficient even when the jump in the coefficient is large.
The numerical results shows that large differences in the coefficients leads to in-
crease in the number of iterations of the PCGM. A more efficient preconditioner
is under investigation. This method is also efficient on parallel computers. The
method is applicable to arbitrary smooth interfaces too and the method can be
extended to the singular case which is ongoing work.

A Appendix

For the better understanding here we give the details of some of the stated
results in the article.

A1. Analytic Map by blending function method

Consider an element of the domain (as shown in Fig. 1). We define an analytic
map M l

2 from S = (−1, 1)2 to Ωl
2

(−1,−1) (1,−1)

(1,1)

S

3      3

2     2
(x  , y  )

(−1,1)

(x   ,  y )

x

y

ξ

η

Ω
    

M
2

l

2

l

Figure 5. Analytic map from S to Ωl
2

The left edge γs of Ωl
2 is a part of the interface Γ0. Let the curved side γs be

parametrized by (r cos θ, r sin θ), θ1 ≤ θ ≤ θ2. Then we can define the map

x =r

(
1− ξ

2

)
cos

(
θ1

(
1− η

2

)
+ θ2

(
1 + η

2

))
+ x2

(
1− η

2

)(
1 + ξ

2

)
+ x3

(
1 + η

2

)(
1 + ξ

2

)



Nonconforming Spectral element method for elasticity interface problems 773

y =r

(
1− ξ

2

)
sin

(
θ1

(
1− η

2

)
+ θ2

(
1 + η

2

))
+ y2

(
1− η

2

)(
1 + ξ

2

)
+ y3

(
1 + η

2

)(
1 + ξ

2

)
.

A2. Residual calculations

Here we briefly describe how to obtain the action of the matrix A on a vector
at each iteration of the preconditioned conjugate gradient method without stor-
ing the matrix A. This has been described for scalar equation case in [36]. Here
we describe for the linear elasticity system. In the least-squares minimization
of the functional defined in (7) we get different integrals on element domain, on
the interelement boundaries and on the boundaries of the domain.

We first show how to compute the integrals on the element domain (the
variation of the first term in (7) gives the following integral)∫

S

∫
((Ll

i)ṽ
l
i)

T ((Ll
i)ũ

l
i − Fl

i) dξ dη

where (Ll
i)ũ

l
i = ((Li,l

1 )ũl
i, (L

i,l
2 )ũl

i)
T , Fl

i = (F i,l
1 , F i,l

2 ). So we have∫
S

∫
(Li,l

1 )ṽl
i((L

i,l
1 )ũi,l

i − F i,l
1 ) dξ dη +

∫
S

∫
(Li,l

2 )ṽl
i((L

i,l
2 )ũl

i − F i,l
2 ) dξ dη. (9)

For simplicity we shall drop the subscripts and superscripts and denote (Li,l
1 )ũl

i

and (Li,l
2 )ũl

i by
7

(L1)ũ =(A1(ũ1)ξξ +B1(ũ1)ξη + C1(ũ1)ηη +D1(ũ1)ξ + E1(ũ1)η)

+ (A2(ũ2)ξξ +B2(ũ2)ξη + C2(ũ2)ηη +D2(ũ2)ξ + E2(ũ2)η) ,

(L2)ũ =(A3(ũ1)ξξ +B3(ũ1)ξη + C3(ũ1)ηη +D3(ũ1)ξ + E3(ũ1)η)

+ (A4(ũ2)ξξ +B4(ũ2)ξη + C4(ũ2)ηη +D4(ũ2)ξ + E4(ũ2)η) .

By rearranging the integral (9) we get∫
S

∫ (
A1(ṽ1)ξξ+B1(ṽ1)ξη+C1(ṽ1)ηη+D1(ṽ1)ξ+E1(ṽ1)η

)
((L1)ũ−F1) dξ dη

+

∫
S

∫ (
A3(ṽ1)ξξ +B3(ṽ1)ξη + C3(ṽ1)ηη +D3(ṽ1)ξ + E3(ṽ1)η

)
((L2)ũ− F2) dξ dη

+

∫
S

∫ (
A2(ṽ2)ξξ +B2(ṽ2)ξη + C2(ṽ2)ηη +D2(ṽ2)ξ + E2(ṽ2)η

)
((L1)ũ− F1) dξ dη

+

∫
S

∫ (
A4(ṽ2)ξξ +B4(ṽ2)ξη + C4(ṽ2)ηη +D4(ṽ2)ξ + E4(ṽ2)η

)
((L2)ũ− F2) dξ dη.

(10)

Consider first term in the above integral and denote

Lṽ1 = A1(ṽ1)ξξ +B1(ṽ1)ξη + C1(ṽ1)ηη +D1(ṽ1)ξ + E1(ṽ1)η and r1 = ((L1)ũ− F1).

Let LT denote the formal adjoint of the differential operator L. Then

Ltṽ1 = (A1ṽ1)ξξ + (B1ṽ1)ξη + (C1ṽ1)ηη − (D1ṽ1)ξ − (E1ṽ1)η .

Integrating by parts and rearranging some terms, we obtain

7General form of these operators in terms of coordinates ξ and η
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∫
(−1,1)2

∫
Lṽ1r1 dξdη

=

∫
(−1,1)2

∫
ṽ1L

tr1 dξdη +

∫
(−1,1)

((
A1(ṽ1)ξ +D1ṽ1

)
r1− ṽ1 (B1 r1)η − ṽ1 (A1 r1)ξ

)
(1, η) dη

−
∫
(−1,1)

((
A1(ṽ1)ξ +D1ṽ1

)
r1− ṽ1 (B1 r1)η − ṽ1 (A1 r1)ξ

)
(−1, η) dη

+ ṽ1 B1r1 (1, η)|1−1 − ṽ1B1 r1 (−1, η)|1−1

+

∫
(−1,1)

(
(C1(ṽ1)η + E1ṽ1)r1− ṽ1 (C1 r1)η − ṽ1 (B1 r1)ξ

)
(ξ, 1) dξ

−
∫
(−1,1)

(
(C1(ṽ1)η + E1ṽ1)r1− ṽ1 (C1 r1)η − ṽ1 (B1 r1)ξ

)
(ξ,−1) dξ.

The integral is evaluated by the Gauss-Lobatto-Legendre (GLL) quadrature
formula with 2W + 1 points. Let ξ2W0 , . . . , ξ2W2W and η2W0 , . . . , η2W2W represent
the (2W + 1) quadrature points in each direction and w2W

0 , . . . , w2W
2W the cor-

responding weights. Let the matrix D2W = d2Wi,j denotes the differentiation
matrix. Thus

dl

dη

(
η2Wi

)
=

2W∑
j=0

d2Wi,j l
(
η2Wj

)
(11)

if l is a polynomial of degree less than or equal to 2W. Then∫
(−1,1)2

∫
Lv1r1dξdη ∼=

2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2W

j

)(
w2W

i w2W
j Ltr1

(
ξ2Wi , η2W

j

))

+

2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2W

j

)(
w2W

j d2W2W,iA1

(
1, η2W

j

)
r1

(
1, η2W

j

))

+

2W∑
j=0

ṽ1
(
1, η2W

j

)
w2W

j

(
D1r1 − (B1r1)η − (A1r1)ξ

)(
1, η2W

j

)

−
2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2W

j

)(
w2W

j d2W0,i A1

(
−1, η2W

j

)
r1

(
−1, η2W

j

))

−
2W∑
j=0

ṽ1
(
−1, η2W

j

)
w2W

j

(
D1r1 − (B1r1)η − (A1r1)ξ

)(
−1, η2W

j

)

+

2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2W

j

)(
w2W

i d2W2W,jC1

(
ξ2Wi , 1

)
r1

(
ξ2Wi , 1

))

+

2W∑
i=0

ṽ1
(
ξ2Wi , 1

)
w2W

i

(
E1r1 − (B1r1)ξ − (C1r1)η

)(
ξ2Wi , 1

)
−

2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2W

j

)(
w2W

i d2W0,j C1

(
ξ2Wi ,−1

)
r1

(
ξ2Wi ,−1

))
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−
2W∑
i=0

ṽ1
(
ξ2Wi ,−1

)
w2W

i

(
E1r1 − (B1r1)ξ − (C1r1)η

)(
ξ2Wi ,−1

)
+ ṽ1(1, 1)B1r1 (1, 1)− ṽ1(1,−1)B1r1 (1,−1)

+ ṽ1(1,−1)B1r1 (−1,−1)− ṽ1(−1, 1)B1r1 (−1, 1) .

Remark: Of course, in writing the above we commit an error. It can be argued
as in [16] that this error is spectrally small. Similarly we can write the other
integral terms in (10).

Now Rewrite ũ1

(
ξWi , ηWj

)
and ũ2

(
ξWi , ηWj

)
by arranging then in lexicographic

order and denote

UW
1;(W+1)i+j+1 = ũ1

(
ξWi , ηWj

)
for 0 ≤ i ≤ W, 0 ≤ j ≤ W,

UW
2;(W+1)i+j+1 = ũ2

(
ξWi , ηWj

)
for 0 ≤ i ≤ W, 0 ≤ j ≤ W,

UW =

[
UW
1

UW
2

]
and let

U2W
1;(2W+1)i+j+1 = ũ1

(
ξ2Wi , η2Wj

)
for 0 ≤ i ≤ 2W, 0 ≤ j ≤ 2W,

U2W
2;(2W+1)i+j+1 = ũ2

(
ξ2Wi , η2Wj

)
for 0 ≤ i ≤ 2W, 0 ≤ j ≤ 2W,

U2W =

[
U2W
1

U2W
2

]
.

Similarly

r2W1;(2W+1)i+j+1 = L1ũ
(
ξ2Wi , η2Wj

)
− F1

(
ξ2Wi , η2Wj

)
,

r2W2;(2W+1)i+j+1 = L2ũ
(
ξ2Wi , η2Wj

)
− F2

(
ξ2Wi , η2Wj

)
Then we may write∫

(−1,1)2

∫
Lṽ1 ((L1)ũ− F1) dξdη =

(
V 2W
1

)t
R1r

2W
1

where R1 is a matrix such that R1r
2W
1 is easily computed. In similar way we

calculate the other terms in integral (10) and finally we may write∫
(−1,1)2

∫
((Ll

i)ṽ
l
i)

T ((Ll
i)ũ

l
i − Fl

i) dξ dη

=
(
V 2W
1

)t
R1r

2W
1 +

(
V 2W
1

)t
R2r

2W
2 +

(
V 2W
2

)t
R3r

2W
1 +

(
V 2W
2

)t
R4r

2W
2 .

(ii) Integrals on the boundary of the elements:
We now show how to evaluate the integral involving the jump in the flux

across the interface. For this we have to examine the norm H1/2(−1, 1). Now

∥l∥21/2,(−1,1)
∼=
∫ 1

−1

l2 (η) dη +

∫ 1

−1

∫ 1

−1

(l (x)− l (y))
2

(x− y)
2 dxdy.
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Let l (η) be a polynomial of degree less than or equal to 2W. Then (l(x)−l(y))
(x−y) is

polynomial of degree less than or equal to 2W in x and y. And so we may define

∥l∥21/2,(−1,1) =
2W∑
i=0

w2W
i l2

(
η2Wi

)
+

2W∑
j=0

2W∑
i ̸=j,i=0

w2W
i w2W

j

(
l
(
η2Wi

)
− l
(
η2Wj

)
η2Wi − η2Wj

)2

+
2W∑
i=0

(
w2W

i

)2( dl

dη

(
η2Wi

))2

.

Thus there is a symmetric positive definite matrix H2W such that

∥l∥21/2,(−1,1) =
2W∑
i=0

2W∑
j=0

l
(
η2Wi

)
H2W

i,j l
(
η2Wj

)
. (12)

Now consider the jump in the flux across the interface. Consider the elements
Ωk

1 and Ωm
2 which have the common edge γs ⊆ Γ0. Let γs be the image of η = −1

under the mapping Mk
1 which maps S to Ωk

1 and also the image of η = 1 under
the mapping Mm

2 which maps S to Ωm
2 . From equation (7), we need to evaluate∥∥∥[σn]− lm,k

1

∥∥∥2
1
2 ,γs

=
∥∥∥((σm

2 n)(ξ, 1)− (σk
1n)(ξ,−1)

)
− lm,k

1

∥∥∥2
1
2 ,(−1,1)

(13)

where σm
2 n = ((σ11n1 + σ12n2), (σ12n1 + σ22n2))

T
= (Tm

1 ũm
2 , Tm

2 ũm
2 )T ,

σk
2n = ((σ11n1 + σ12n2), (σ12n1 + σ22n2))

T
= (T k

1 ũ
k
1 , T

k
2 ũ

k
1)

T in transformed
coordinates ξ and η and

lm,k
1 (ξ) = (qm,k

1 (ξ, 1), qm,k
2 (ξ, 1))T = (qm,k

1 (ξ,−1), qm,k
2 (ξ,−1))T .

The variation of the boundary term in (13) is given by

∼=
2W∑
i=0

2W∑
j=0

(Tm
1 ṽm

2 (ξ2Wi , 1)− T k
1 ṽ

k
1(ξ

2W
i ,−1))H2W

i,j (I)

+
2W∑
i=0

2W∑
j=0

(Tm
2 ṽm

2 (ξ2Wi , 1)− T k
2 ṽ

k
1(ξ

2W
i ,−1))H2W

i,j (II),

where I =
(
(Tm

1 ũm
2 (ξ2Wj , 1)− T k

1 ũ
k
1(ξ

2W
j ,−1))− qm,k

1 (ξ2Wj ,−1)
)
and

II =
(
(Tm

2 ũm
2 (ξ2Wj , 1)− T k

2 ũ
k
1(ξ

2W
j ,−1))− qm,k

2 (ξ2Wj ,−1)
)
.

Now this can be written as

=
2W∑
i=0

2W∑
j=0

Tm
1 ṽm

2 (ξ2Wi , 1) H2W
i,j (I) +

2W∑
i=0

2W∑
j=0

Tm
2 ṽm

2 (ξ2Wi , 1) H2W
i,j (II)

+
2W∑
i=0

2W∑
j=0

T k
1 ṽ

k
1(ξ

2W
i ,−1)) H2W

i,j (−I) +
2W∑
i=0

2W∑
j=0

T k
2 ṽ

k
1(ξ

2W
i ,−1)) H2W

i,j (−II)

(14)
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Consider first line in the above equation. For simplicity we shall drop the
subscripts and superscripts and represent T1v and T2v in general form

T1v = P̃1(ṽ1)ξ + Q̃1(ṽ1)η + R̃1(ṽ2)ξ + S̃1(ṽ2)η,

T2v = P̃2(ṽ1)ξ + Q̃2(ṽ1)η + R̃2(ṽ2)ξ + S̃2(ṽ2)η

and denote J 2W
1 (j) = (Tm

1 ũm
2 (ξ2Wj , 1)− T k

1 ũ
k
1(ξ

2W
j ,−1))

and J 2W
2 (j) = (Tm

2 ũm
2 (ξ2Wj , 1) − T k

2 ũ
k
1(ξ

2W
j ,−1)). Therefore first line of (14)

becomes
2W∑
i=0

2W∑
j=0

T1v (ξ2Wi , 1)H2W
i,j

(
J 2W

1 (j)− q1(ξ
2W
j , 1)

)

+

2W∑
i=0

2W∑
j=0

T2v (ξ2Wi , 1)H2W
i,j

(
J 2W

2 (j)− q2(ξ
2W
j , 1)

)
.

(15)

By rearranging the terms, we get

=
2W∑
i=0

2W∑
j=0

(
(P̃1(ṽ1)ξ + Q̃1(ṽ1)η)(ξ

2W
i , 1)

)
H2W

i,j

(
J 2W
1 (j)− q1(ξ

2W
j , 1)

)
+

2W∑
i=0

2W∑
j=0

(
(P̃2(ṽ1)ξ + Q̃2(ṽ1)η)(ξ

2W
i , 1)

)
H2W

i,j

(
J 2W
2 (j)− q2(ξ

2W
j , 1)

)
+

2W∑
i=0

2W∑
j=0

(
(R̃1(ṽ2)ξ + S̃1(ṽ2)η)(ξ

2W
i , 1)

)
H2W

i,j

(
J 2W
1 (j)− q1(ξ

2W
j , 1)

)
+

2W∑
i=0

2W∑
j=0

(
(R̃2(ṽ2)ξ + S̃2(ṽ2)η)(ξ

2W
i , 1)

)
H2W

i,j

(
J 2W
2 (j)− q2(ξ

2W
j , 1)

)
.

(16)

Let

ρ2Wi,1 =
2W∑
j=0

H2W
i,j

(
J 2W

1 (j)− q1(ξ
2W
j , 1)

)
and ρ2Wi,2 =

2W∑
j=0

H2W
i,j

(
J 2W

2 (j)− q2(ξ
2W
j , 1)

)
.

Then we may write (16) as (using 11)

=
2W∑
j=0

ṽ1(ξ
2W
j , 1)

(
2W∑
i=0

d2Wi,j P̃1(ξ
2W
i , 1)

)
ρ2Wi,1 +

2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2Wj

)(
Q̃1(ξ

2W
i , 1)d2W2W,jρ

2W
i,1

)

+
2W∑
j=0

ṽ1(ξ
2W
j , 1)

(
2W∑
i=0

d2Wi,j P̃2(ξ
2W
i , 1)

)
ρ2Wi,2 +

2W∑
i=0

2W∑
j=0

ṽ1
(
ξ2Wi , η2Wj

)(
Q̃2(ξ

2W
i , 1)d2W2W,jρ

2W
i,2

)

+
2W∑
j=0

ṽ2(ξ
2W
j , 1)

(
2W∑
i=0

d2Wi,j R̃1(ξ
2W
i , 1)

)
ρ2Wi,1 +

2W∑
i=0

2W∑
j=0

ṽ2
(
ξ2Wi , η2Wj

)(
S̃1(ξ

2W
i , 1)d2W2W,jρ

2W
i,1

)

+
2W∑
j=0

ṽ2(ξ
2W
j , 1)

(
2W∑
i=0

d2Wi,j R̃2(ξ
2W
i , 1)

)
ρ2Wi,2 +

2W∑
i=0

2W∑
j=0

ṽ2
(
ξ2Wi , η2Wj

)(
S̃2(ξ

2W
i , 1)d2W2W,jρ

2W
i,2

)
=
(
V 2W
1

)t
T1X

2W
1 +

(
V 2W
1

)t
T2X

2W
2 +

(
V 2W
2

)t
T3X

2W
1 +

(
V 2W
2

)t
T4X

2W
2 .
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Here T1, T2, T3, T4 are (2W + 1)
2 × (2W + 1) matrices and T1X

2W
1 , T2X

2W
2 ,

T3X
2W
1 and T4X

2W
2 can be easily computed. Similarly terms of the second line

in (14) can be obtained.
Similarly one can evaluate the integrals involving the inter element jumps and

the integrals on the boundaries of the domain.

Combining the all the integral terms in an element

Consider an element Ωm
2 with a part of the interface γs ⊆ Γ0(as we have

considered above) as one edge and the other edges may be part of the boundary
of the domain or the common edges shared by neighbouring elements.

Adding all the terms we obtain∫
(−1,1)2

∫
((Lm

2 )ṽm
2 )T ((Lm

2 )ũm
2 − Fm

2 ) dξ dη

+

2W∑
i=0

2W∑
j=0

Tm
1 ṽm

2 (ξ2Wi , 1) H2W
i,j (I) +

2W∑
i=0

2W∑
j=0

Tm
2 ṽm

2 (ξ2Wi , 1) H2W
i,j (II) + .....

=
(
V 2W
1

)t

R1r
2W
1 +

(
V 2W
1

)t

R2r
2W
2 +

(
V 2W
2

)t

R3r
2W
1 +

(
V 2W
2

)t

R4r
2W
2

+
(
V 2W
1

)t

T1X
2W
1 +

(
V 2W
1

)t

T2X
2W
2 +

(
V 2W
2

)t

T3X
2W
1 +

(
V 2W
2

)t

T4X
2W
2 + ....

=
(
V 2W
1

)t

O2W
1 +

(
V 2W
2

)t

O2W
2

where O2W
1 = R1r

2W
1 +R2r

2W
2 + T1X

2W
1 + T2X

2W
2 + ..... and O2W

2 = R3r
2W
1 +

R4r
2W
2 + T3X

2W
1 + T4X

2W
2 + ...... are (2W + 1)2 vectors which can be easily

computed. Now there exists a matrix GW such that

V 2W
1 = GWV W

1 andV 2W
2 = GWV W

2 .

Hence(
V 2W
1

)t

O2W
1 =

(
V W
1

)t
((

GW
)t

O2W
1

)
and

(
V 2W
2

)t

O2W
2 =

(
V W
2

)t
((

GW
)t

O2W
2

)
.

In [14] it has been shown how
(
GW

)t
O2W

1 can be computed. Let J1 =
(
GW

)t
O2W

1 .

Similarly we obtain J2. Now J =

[
J1
J2

]
is 2(W + 1)2 vector. Finally we ob-

tain J vector corresponding to V tJ. Thus we see to compute J we do not need
to compute and store any matrices such as the mass and stiffness matrices.
The evaluation of the residuals on each element requires the interchange of the
boundary values between neighbouring elements.

A3. Corrections to the nonconforming solution

We can construct a set of corrections to the spectral element functions{{
z̃k1(ξ, η)

}
k
,
{
z̃l

2(ξ, η)
}
l

}
so that the corrected solution

{{
ẑk1(ξ, η)

}
k
,
{
ẑl

2(ξ, η)
}
l

}
is conforming and belongs to H1(Ω). These corrections are defined below (see
[37]).

We do this in two steps :
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1. First, we make a bilinear correction
{{

s̃k1(ξ, η)
}
k
,
{
s̃l

2(ξ, η)
}
l

}
so that{{

z̃k1(ξ, η) + s̃k1(ξ, η)
}
k
,
{
z̃l

2(ξ, η) + s̃l

2(ξ, η)
}
l

}
are continuous at the vertices of the rectangles on which they are defined.

Consider an element Ωm
2 . Mm

2 is the map from S = (−1, 1)2 to Ωm
2 . Let

P1, P2, P3 and P4 be the four vertices of S. These vertices are common to some
of the neighbouring elements. Now consider the average values z (Pi) of the
solutions at each vertex Pi (i = 1, 2, 3, 4) from all the elements which have Pi

as common vertex. Define ai = z (Pi)− z̃m2 (Pi) for i = 1, 2, 3, 4. Now we define
bilinear correction s̃m2 (ξ, η)

s̃m2 (ξ, η) =a1

(
(1− ξ)(1− η)

4

)
+ a2

(
(1 + ξ)(1− η)

4

)
+ a3

(
(1 + ξ)(1 + η)

4

)
+ a4

(
(1− ξ)(1 + η)

4

)
.

such that (z̃m2 + s̃m2 ) (Pi) = z (Pi) . Similarly one can define in other elements.
2. Next, we make a correction

{{
t̃k1(ξ, η)

}
k
,
{
t̃l2(ξ, η)

}
l

}
so that{{

z̃k1(ξ, η) + s̃k1(ξ, η) + t̃k1(ξ, η)
}
k
,
{
z̃l

2(ξ, η) + s̃l

2(ξ, η) + t̃l2(ξ, η)
}
l

}
are conforming.

Consider Ωm
2 . If γ is a side of S then we choose t̃m2 so that (z̃m2 +s̃m2 + t̃m2 ) (P ) =

(z+ s)(P ) for P ∈ γ. Now t̃m2 has it’s traces defined on the sides of the square
S. The traces of t̃m2 are polynomials on the sides of S. Let

t̃m2 (ξ,−1) = ϕ1(ξ), t̃m2 (ξ, 1) = ϕ3(ξ); t̃m2 (−1, η) = ϕ4(η), t̃m2 (1, η) = ϕ2(η)

where ϕi(.)=(ϕ
1
i (.), ϕ

2
i (.))

T for i=1, 2, 3, 4. We define a lifting of t̃m2 (ξ,η) onto S as

t̃m2 (ξ, η) =
1

2
(ϕ1(ξ)(1− η) + ϕ3(η)(1 + η) + ϕ2(η)(1 + ξ) + ϕ4(η)(1− ξ)) .

We now define the corrected set of spectral element functions as{{
ẑk1(ξ, η)

}
k
,
{
ẑ
l

2(ξ, η)
}
l

}
=
{{

z̃k1(ξ, η) + s̃k1(ξ, η) + t̃k1(ξ, η)
}

k
,
{
z̃
l

2(ξ, η) + s̃
l

2(ξ, η) + t̃
l

2(ξ, η)
}
l

}
.

These constructions are similar to Lemma 4.57 in [34].
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