• Title/Summary/Keyword: Confocal Image

Search Result 102, Processing Time 0.023 seconds

광섬유의 직접 구동에 의한 공초점 현미경 (Scanning confocal microscope by direct oscillation of an optical fiber)

  • 김종배;류광현;박두성;노정은;권남익
    • 한국광학회지
    • /
    • 제14권1호
    • /
    • pp.80-84
    • /
    • 2003
  • 두 가지의 다른 방법으로 광섬유를 직접 구동하여 공초점 현미경을 제작하였다. 압전소자와 튜닝 포크는 광섬유를 진동시키는데 사용하였다. 6 frame의 640$\times$480 픽셀 영상을 압전소자 진동으로 1초 동안 얻었고, 1 frame의 640$\times$480 픽셀 영상을 튜닝 포크 진동으로 1초 동안 얻었다 이러한 광섬유의 진동은 confocal 영상에 일그러짐을 주지 않았다.

수상돌기 소극체의 형태변화 분석을 위한 공초점현미경 영상 분할 및 구조추출 (Confocal Microscopy Image Segmentation and Extracting Structural Information for Morphological Change Analysis of Dendritic Spine)

  • 손진희;김민정;김명희
    • 한국시뮬레이션학회논문지
    • /
    • 제17권4호
    • /
    • pp.167-174
    • /
    • 2008
  • 공초점 현미경(confocal microscopy) 기술의 적용은 살아있는 세포를 고배율로 관찰하는 것을 가능하게 하였다. 알츠하이머나 파킨슨 질환 같은 퇴행성 뇌질환의 경우 뇌세포의 수상돌기의 형태학적 변화가 연관되어 있음이 알려져 있다. 따라서 공초점 현미경 영상으로부터 이러한 정보를 추출하는 방법에 대한 연구가 필요하다. 그러나 공초점 현미경 영상은 명암도 분포가 고르지 않고, 구조의 경계 부분의 번짐 현상 등으로 인해 구조 추출에 어려움을 겪고 있는 실정이다. 따라서 이러한 문제를 극복하고 관심 구조에 대한 특성을 추출할 수 있는 영상처리 기법이 필요하다. 본 논문에서는 뇌세포의 수상돌기 공초점 현미경 사진으로부터 구조정보를 추출하는 새로운 방법을 제안한다. 첫째, 미세 분기 구조의 경계를 향상시키는 비선형 확산 필터링을 적용한다. 둘째, 관심구조를 반복적 역치 선택 방법을 이용해 분할한다. 셋째, 분할된 구조의 분석을 위해 구조의 중심축과 경계선을 추출하기 위한 패스트 마칭 방법(Fast Marching Method)에 기반을 둔 골격화를 수행한다. 본 논문에서 제안된 방법은 기존의 방법들과는 달리 주변 잡음에 덜 민감하였으며 거친 경계선에 영향을 훨씬 적게 받음으로써 보다 정확하고 사실적인 중심축 추출 결과를 보였다.

  • PDF

공초점 레이저 주사 현미경을 이용한 혈구 유동가시화 및 세포공핍층 측정에 관한 연구 (Flow Visualization of Blood Cell and Detection of Cell Depleted Layer Using a Confocal Laser Scanning Microscope)

  • 임수희;김위한;이호;이춘영;박철우
    • 한국가시화정보학회지
    • /
    • 제8권1호
    • /
    • pp.46-52
    • /
    • 2010
  • In the present study, we employed the confocal laser scanning microscopy (CLSM) system to visualize the blood flow field with $1{\times}1{\mu}m^2$ spatial resolution. Based on the confocal microscopic image of red blood cells (RBCs), we performed the velocity vector field measurement and evaluated characteristics of cell migration from the cell depleted layer thickness calculation. The rat and mouse's blood were supplied into a micro glass tubes in vitro. The line scanning rate of confocal microscopy was 15 kHz for a $500{\times}500$ pixels image. As a result, the red blood cell itself can be used as a tracer directly without any kind of invasive tracer particle to get the velocity vector field of blood flow by performing particle image velocimetry (PIV) technique.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

고속 3차원 측정 및 칼라 이미징을 위한 다중 광탐침 공초점 주사 현미경 (Confocal Scanning Microscopy with Multiple Optical Probes for High Speed 3D Measurements and Color Imaging)

  • 천완희;이승우;안진우;권대갑
    • 반도체디스플레이기술학회지
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 2008
  • Confocal scanning microscopy is a widely used technique for three dimensional measurements because it is characterized by high resolution, high SNR and depth discrimination. Generally an image is generated by moving one optical probe that satisfies the confocal condition on the specimen. Measurement speed is limited by movement speed of the optical probe; scanning speed. To improve measurement speed we increase the number of optical probes. Specimen region to scan is divided by optical probes. Multi-point information each optical probe points to can be obtained simultaneously. Therefore image acquisition speed is increased in proportion to the number of optical probes. And multiple optical probes from red, green and blue laser sources can be used for color imaging and image quality, i.e., contrast, is improved by adding color information by this way. To conclude, this technique contributes to the improvement of measurement speed and image quality.

  • PDF

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.

개발 웨이퍼 검사위한 Confocal 이미징 시스템의 개발 (Development of Confocal Imaging System for Wafer Inspection)

  • 고국원;다이 느엔 콩;고경철
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.108-112
    • /
    • 2010
  • Confocal Imaging System is an essential machine for a wide range of inspection wafer. For concurrent and fast acquiring the image data of four channels, the new image acquisition system used the protocol of camera-link standard with the full mode of configuration in interconnection with a frame grabber integrated in a computer, which is popularly used for many cameras, so the programming environment of image processing is optional such as Visual C++, Matlab. In addition, many conventional methods were coordinately used for contribution to build the high quality of images for precise processing analog signals of PhotoMutiplier Tubes(PMTs), accurate control of scanning device, sensitivity of PMTs, and laser source. The prototype of new image acquisition system, could meet the goal of development, it is used in LSCM for high content screening to investigation the processes of elements of living specimens at the same time by simultaneous grab image data on 4 PMTs channels.

  • PDF