DOI QR코드

DOI QR Code

Flow Visualization of Blood Cell and Detection of Cell Depleted Layer Using a Confocal Laser Scanning Microscope

공초점 레이저 주사 현미경을 이용한 혈구 유동가시화 및 세포공핍층 측정에 관한 연구

  • 임수희 (경북대학교 대학원 기계공학과) ;
  • 김위한 (경북대학교 대학원 기계공학과) ;
  • 이호 (경북대학교 기계공학부) ;
  • 이춘영 (경북대학교 기계공학부) ;
  • 박철우 (경북대학교 기계공학부)
  • Received : 2010.03.04
  • Accepted : 2010.03.26
  • Published : 2010.03.31

Abstract

In the present study, we employed the confocal laser scanning microscopy (CLSM) system to visualize the blood flow field with $1{\times}1{\mu}m^2$ spatial resolution. Based on the confocal microscopic image of red blood cells (RBCs), we performed the velocity vector field measurement and evaluated characteristics of cell migration from the cell depleted layer thickness calculation. The rat and mouse's blood were supplied into a micro glass tubes in vitro. The line scanning rate of confocal microscopy was 15 kHz for a $500{\times}500$ pixels image. As a result, the red blood cell itself can be used as a tracer directly without any kind of invasive tracer particle to get the velocity vector field of blood flow by performing particle image velocimetry (PIV) technique.

Keywords

References

  1. Maeda N., 1996, "Erythrocyte Rheology in Micro-circulation", Japanese J. Physiology, Vol.46, pp.1-14. https://doi.org/10.2170/jjphysiol.46.1
  2. Basurt O. K., Gelmont D. and Meiselman H., 1998, "Red Blood Cell Deformability in Sepsis", Am J Respir Crit Care Med, Vol.157, pp.421-427. https://doi.org/10.1164/ajrccm.157.2.9611103
  3. Park C. W., Lee S. J. and Shin S., 2003, "Micro-PIV Measurements of in vitro Blood Flow in a Micro-channel", Int. J. Vascular Biomed. Eng., Vol.1(2), pp.30-35.
  4. Adrian R. J., 1991, "Particle-Imaging Techniques for Experimental Fluid Mechanics", Annu. Rev. Fluid Mech., Vol.23, pp.261-304. https://doi.org/10.1146/annurev.fl.23.010191.001401
  5. Wilson T., 1990, Confocal Microscopy, Academic Press, San Diego. Calif., pp.27-32.
  6. Webb R. W., 1996 "Confocal Optical Microscopy", Reports on Progress on Physics, Vol.59, pp.424-471.
  7. Pawley J. B., 1990, Handbook of Biological Confocal Microscopy, Plenum Press, New York, pp.19-38.
  8. Lee H. and Kim W. H., 2008, "The Video-Rate in vivo Confocal Microscopy for Biomedical Applications", KSME J., Vol.56, pp.127-128.
  9. Jalbert I., Staplenton F., Papas E., Sweeney D. F. and Coroneo M., 2003, "In vivo Confocal Microscopy of the Human Cornea", Br. J. Opthalmol., Vol.87(2), pp.225-236. https://doi.org/10.1136/bjo.87.2.225
  10. Toth K., Kesmarky G. and Vekasi J., 1999, "Hemorheological and Hemodynamic Parameters in Patients with Essential Hypertension", Clin. Hemorheol. Microcirc. Vol.21, pp.209-216.
  11. Resch K. L., Ernst E., Matrai A. and Paulsen H. F. 1992, "Fibrinogen and Viscosity as Risk Factors for Subsequent Cardiovascular Event in Stroke Survivors", Ann. Intern. Med. Vol.117, pp.371-375. https://doi.org/10.7326/0003-4819-117-5-371
  12. Lima R., Wada S., Tsubota K. and Yamaguchi T., 2006, "Confocal Micro-PIV Measurements of Three-Dimensional Profiles of Cell Suspension Flow in a Square Microchannel", Meas. Sci. Technol. Vol.17, pp.797-808. https://doi.org/10.1088/0957-0233/17/4/026
  13. Park C. W., Shin S. H., Kim G. M., Jang J. H. and Gu Y. H., 2006, "A Hemodynamic Study on a Marginal Cell Depletion Layer of Blood Flow inside a Microchannel", Key Eng. Materials, Vol.326, pp.863-866. https://doi.org/10.4028/www.scientific.net/KEM.326-328.863
  14. Kim S., Kong R. L., Popel A. S., Intaglietta M. and Johnson P. C., 2007, "Temporal and Spatial Variations of Cell-Free Layer Width in Arterioles", Am J Physiol. Heart Circ. Physiol., Vol.293, pp.1526-1535. https://doi.org/10.1152/ajpheart.01090.2006