• Title/Summary/Keyword: Cone-beam computed tomography(CBCT)

Search Result 563, Processing Time 0.03 seconds

Comparison of postoperative changes in the distal and proximal segments between conventional and sliding mini-plate fixation following mandibular setback

  • Kim, Seong-Sik;Kwak, Kyoung-Ho;Ko, Ching-Chang;Park, Soo-Byung;Son, Woo-Sung;Kim, Yong-Il
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.372-378
    • /
    • 2016
  • Objective: The purpose of the present study was to evaluate the postoperative three-dimensional (3D) changes in the proximal segments after mandibular setback sagittal split ramus osteotomy and to compare the changes between the conventional mini-plate fixation and semi-rigid sliding plate fixation. Methods: Cone-beam computed tomography (CBCT) images were used to evaluate the postoperative 3D changes in the proximal segments during the healing process. CBCT images were superimposed using the symphysis and the lower anterior mandible as references. Results: There were no statistically significant differences between the conventional mini-plate and semi-rigid sliding plate groups (p > 0.05). With respect to the distribution of changes greater than 2 mm in the landmarks, the right condylion, right coronoid process, and left condylion showed ratios of 55.6%, 50.0%, and 44.4%, respectively, in the semi-rigid sliding plate group; however, none of the landmarks showed ratios greater than 30% in the conventional mini-plate group. Conclusions: There were no statistically significant differences in postoperative changes in the segments between the conventional mini-plate and semi-rigid sliding plate groups. Nevertheless, while selecting the type of fixation technique, clinicians should consider that landmarks with greater than 2 mm changes were higher in the semi-rigid sliding plate group than in the conventional mini-plate group.

Three-dimensional surgical accuracy between virtually planned and actual surgical movements of the maxilla in two-jaw orthognathic surgery

  • Hong, Mihee;Kim, Myung-Jin;Shin, Hye Jung;Cho, Heon Jae;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.293-303
    • /
    • 2020
  • Objective: To investigate the three-dimensional (3D) surgical accuracy between virtually planned and actual surgical movements (SM) of the maxilla in two-jaw orthognathic surgery. Methods: The sample consisted of 15 skeletal Class III patients who underwent two-jaw orthognathic surgery performed by a single surgeon using a virtual surgical simulation (VSS) software. The 3D cone-beam computed tomography (CBCT) images were obtained before (T0) and after surgery (T1). After merging the dental cast image onto the T0 CBCT image, VSS was performed. SM were classified into midline correction (anterior and posterior), advancement, setback, anterior elongation, and impaction (total and posterior). The landmarks were the midpoint between the central incisors, the mesiobuccal cusp tip (MBCT) of both first molars, and the midpoint of the two MBCTs. The amount and direction of SM by VSS and actual surgery were measured using 3D coordinates of the landmarks. Discrepancies less than 1 mm between VSS and T1 landmarks indicated a precise outcome. The surgical achievement percentage (SAP, [amount of movement in actual surgery/amount of movement in VSS] × 100) (%) and precision percentage (PP, [number of patients with precise outcome/number of total patients] × 100) (%) were compared among SM types using Fisher's exact and Kruskal-Wallis tests. Results: Overall mean discrepancy between VSS and actual surgery, SAP, and PP were 0.13 mm, 89.9%, and 68.3%, respectively. There was no significant difference in the SAP and PP values among the seven SM types (all p > 0.05). Conclusions: VSS could be considered as an effective tool for increasing surgical accuracy.

A comparative study on the location of the mandibular foramen in CBCT of normal occlusion and skeletal class II and III malocclusion

  • Park, Hae-Seo;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.25.1-25.9
    • /
    • 2015
  • Background: During the orthognathic surgery, it is important to know the exact anatomical location of the mandibular foramen to achieve successful anesthesia of inferior alveolar nerve and to prevent damage to the nerves and vessels supplying the mandible. Methods: Cone-beam computed tomography (CBCT) was used to determine the location of the mandibular foramen in 100 patients: 30 patients with normal occlusion (13 men, 17 women), 40 patients with skeletal class II malocclusion (15 men, 25 women), 30 patients with skeletal class III malocclusion (17 men, 13 women). Results: The distance from the anterior border of the mandibular ramus to mandibular foramen did not differ significantly among the three groups, but in the group with skeletal class III malocclusion, this distance was an average of $1.43{\pm}1.95mm$ longer in the men than in the women (p < 0.05). In the skeletal class III malocclusion group, the mandibular foramen was higher than in the other two groups and was an average of $1.85{\pm}3.23mm$ higher in the men than in the women for all three groups combined (p < 0.05). The diameter of the ramus did not differ significantly among the three groups but was an average of $1.03{\pm}2.58mm$ wider in the men than in the women for all three groups combined (p < 0.05). In the skeletal class III malocclusion group, the ramus was longer than in the other groups and was an average of $7.9{\pm}3.66mm$ longer in the men than women. Conclusions: The location of the mandibular foramen was higher in the skeletal class III malocclusion group than in the other two groups, possibly because the ramus itself was longer in this group. This information should improve the success rate for inferior alveolar nerve anesthesia and decrease the complications that attend orthognathic surgery.

Sex-, growth pattern-, and growth status-related variability in maxillary and mandibular buccal cortical thickness and density

  • Schneider, Sydney;Gandhi, Vaibhav;Upadhyay, Madhur;Allareddy, Veerasathpurush;Tadinada, Aditya;Yadav, Sumit
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.108-119
    • /
    • 2020
  • Objective: The primary objective of this study was to quantitatively analyze the bone parameters (thickness and density) at four different interdental areas from the distal region of the canine to the mesial region of the second molar in the maxilla and the mandible. The secondary aim was to compare and contrast the bone parameters at these specific locations in terms of sex, growth status, and facial type. Methods: This retrospective cone-beam computed tomography (CBCT) study reviewed 290 CBCT images of patients seeking orthodontic treatment. Cortical bone thickness in millimeters (mm) and density in pixel intensity value were measured for the regions (1) between the canine and first premolar, (2) between the first and second premolars, (3) between the second premolar and first molar, and (4) between the first and second molars. At each location, the bone thickness and density were measured at distances of 2, 6, and 10 mm from the alveolar crest. Results: The sex comparison (male vs. female) in cortical bone thickness showed no significant difference (p > 0.001). The bone density in growing subjects was significantly (p < 0.001) lower than that in non-growing subjects for most locations. There was no significant difference (p > 0.001) in bone parameters in relation to facial pattern in the maxilla and mandible for most sites. Conclusions: There was no significant sex-related difference in cortical bone thickness. The buccal cortical bone density was higher in females than in males. Bone parameters were similar for subjects with hyperdivergent, hypodivergent, and normodivergent facial patterns.

Positional uncertainties of cervical and upper thoracic spine in stereotactic body radiotherapy with thermoplastic mask immobilization

  • Jeon, Seung Hyuck;Kim, Jin Ho
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.122-128
    • /
    • 2018
  • Purpose: To investigate positional uncertainty and its correlation with clinical parameters in spine stereotactic body radiotherapy (SBRT) using thermoplastic mask (TM) immobilization. Materials and Methods: A total of 21 patients who underwent spine SBRT for cervical or upper thoracic spinal lesions were retrospectively analyzed. All patients were treated with image guidance using cone beam computed tomography (CBCT) and 4 degrees-of-freedom (DoF) positional correction. Initial, pre-treatment, and post-treatment CBCTs were analyzed. Setup error (SE), pre-treatment residual error (preRE), post-treatment residual error (postRE), intrafraction motion before treatment (IM1), and intrafraction motion during treatment (IM2) were determined from 6 DoF manual rigid registration. Results: The three-dimensional (3D) magnitudes of translational uncertainties (mean ${\pm}$ 2 standard deviation) were $3.7{\pm}3.5mm$ (SE), $0.9{\pm}0.9mm$ (preRE), $1.2{\pm}1.5mm$ (postRE), $1.4{\pm}2.4mm$ (IM1), and $0.9{\pm}1.0mm$ (IM2), and average angular differences were $1.1^{\circ}{\pm}1.2^{\circ}$ (SE), $0.9^{\circ}{\pm}1.1^{\circ}$ (preRE), $0.9^{\circ}{\pm}1.1^{\circ}$ (postRE), $0.6^{\circ}{\pm}0.9^{\circ}$ (IM1), and $0.5^{\circ}{\pm}0.5^{\circ}$ (IM2). The 3D magnitude of SE, preRE, postRE, IM1, and IM2 exceeded 2 mm in 18, 0, 3, 3, and 1 patients, respectively. No association were found between all positional uncertainties and body mass index, pain score, and treatment location (p > 0.05, Mann-Whitney test). There was a tendency of intrafraction motion to increase with overall treatment time; however, the correlation was not statistically significant (p > 0.05, Spearman rank correlation test). Conclusion: In spine SBRT using TM immobilization, CBCT and 4 DoF alignment correction, a minimum residual translational uncertainty was 2 mm. Shortening overall treatment time and 6 DoF positional correction may further reduce positional uncertainties.

Consideration of Lateral Cortical Bone Thickness and IAN Canal Location During Mandibular Ramus Bone Grafting for Implant Placement

  • Lee, Nam-Hoon;Ohe, Joo-Young;Lee, Baek-Soo;Kwon, Yong-Dae;Choi, Byung-Joon;Bang, Sung-Moon
    • Journal of Korean Dental Science
    • /
    • v.3 no.2
    • /
    • pp.4-11
    • /
    • 2010
  • Purpose: This study aimed at examining the thickness of lateral cortical bone in the mandibular posterior body and the location of the inferior alveolar nerve canal as well as investigating the clinically viable bone grafting site(s) and proper thickness of the bone grafts. Subjects and Methods: The study enrolled a total of 49 patients who visited the Department of Oral and Maxillofacial Surgery at Kyung Hee University Dental Hospital to have their lower third molar extracted and received cone beam computed tomography (CBCT) examinations. Their CBCT data were used for the study. The thickness of lateral cortical bone and the location of inferior alveolar nerve canal were each measured from the buccal midpoint of the patients' lower first molar to the mandibular ramus area in the occlusal plane of the molar area. Results: Except in the external oblique ridge and alveolar ridge, all measured areas exhibited the greatest cortical bone thickness near the lower second molar area and the smallest cortical bone thickness in the retromolar area. The inferior alveolar nerve canal was found to be located in the innermost site near the lower second molar area compared to other areas. In addition, the greatest thickness of the trabecular bone was found between the inferior alveolar nerve canal and the lateral cortical bone. Conclusions: In actual clinical settings involving bone harvesting in the posterior mandibular body, clinicians are advised to avoid locating the osteotomy line in the retromolar area to help protect the inferior alveolar nerve canal from damage. Harvesting the bone near the lower second molar area is judged to be the proper way of securing cortical bone with the greatest thickness.

  • PDF

A comparison of different compressive forces on graft materials during alveolar ridge preservation

  • Cho, In-Woo;Park, Jung-Chul;Shin, Hyun-Seung
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.51-63
    • /
    • 2017
  • Purpose: Following tooth extraction, alveolar ridge preservation (ARP) can maintain the dimensions of ridge height and width. Although previous studies have demonstrated the effects of ARP, few if any studies have investigated the compressive force applied during grafting. The aim of this study was to determine the effects of different compressive forces on the graft materials during ARP. Methods: After tooth extraction, sockets were filled with deproteinized bovine bone mineral with 10% porcine collagen and covered by a resorbable collagen membrane in a double-layered fashion. The graft materials were compressed using a force of 5 N in the test group (n=12) and a force of 30 N in the control group (n=12). A hidden X suture was performed to secure the graft without primary closure. Cone-beam computed tomography (CBCT) was performed immediately after grafting and 4 months later, just before implant surgery. Tissue samples were retrieved using a trephine bur from the grafted sites during implant surgery for histologic and histomorphometric evaluations. Periotest values (PTVs) were measured to assess the initial stability of the dental implants. Results: Four patients dropped out from the control group and 20 patients finished the study. Both groups healed without any complications. The CBCT measurements showed that the ridge volume was comparably preserved vertically and horizontally in both groups (P>0.05). Histomorphometric analysis demonstrated that the ratio of new bone formation was significantly greater in the test group (P<0.05). The PTVs showed no significant differences between the 2 groups (P>0.05). Conclusions: The application of a greater compressive force on biomaterials during ARP significantly enhanced new bone formation while preserving the horizontal and vertical dimensions of the alveolar ridge. Further studies are required to identity the optimal compressive force for ARP.

Sex Determination Using a Discriminant Analysis of Maxillary Sinuses and Three-Dimensional Technology

  • Jeong-Hyun Lee;Hee-Jeung Jee;Eun-Seo Park;Seok-Ho Kim;Sung-Suk Bae
    • Journal of dental hygiene science
    • /
    • v.22 no.4
    • /
    • pp.249-255
    • /
    • 2022
  • Background: Sexual dimorphism is important for sex determination in the field of forensics. However, sexual dimorphism is commonly assessed using cone beam computed tomography (CBCT) rather than three-dimensional (3D) modeling software; therefore, studies using a more accurate measurement approach are necessary. This study assessed the sexual dimorphism of the MS using a 3D modeling program to obtain information that could contribute to the fields of surgery and forensics. Methods: The CBCT data of 60 patients (age, 20~29 y; 30 males and 30 females) admitted to the Department of Orthodontics at the Dankook University School of Dentistry were provided in Digital Imaging and Communications in Medicine (DICOM) format. The left MS and right MS were modeled based on the DICOM files using the Mimics (version 22; Materialise, Leuven, Belgium) 3D program and converted to stereolithography (STL) files used to measure the width, length, and height of the MS, infraorbital foramen (IOF), right MS, and left MS. The average of three repeated measurements was calculated, and a reliability test was performed to ensure data reliability (Cronbach's α=0.618). A canonical discriminant analysis was performed using a standard approach (left: Box's M=0.096; right: Box's M=0.115). Results: Males had greater values for all parameters (MS width, MS length, MS height, IOF, right MS, left MS) than females. The discriminant analysis identified six independent variables (MS width, MS height, MS length, IOF, right MS, left MS) that could identify sex. The left MS and right MS correctly identified the sex of 81.7% and 71.7% of the patients, respectively, with the left MS having higher accuracy. Conclusion: This study confirmed that, for Korean individuals, the left MS has a better ability to identify sex than the right MS. These results may contribute to sex identification in the fields of surgery and forensics.

Consideration of root position in virtual tooth setup for extraction treatment: A comparative study of simulated and actual treatment results

  • Mirinae Park;Veerasathpurush Allareddy;Phimon Atsawasuwan;Min Kyeong Lee;Kyungmin Clara Lee
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.26-34
    • /
    • 2023
  • Objective: The purpose of the present study was to compare the root positions in virtual tooth setups using only crowns in a simulated treatment with those achieved in the actual treatment. Methods: Pre- and post-treatment intraoral and corresponding cone beam computed tomography (CBCT) scans were obtained from 15 patients who underwent orthodontic treatment with premolar extraction. A conventional virtual tooth setup was used for the treatment simulation. Pre- and post-treatment three-dimensional digital tooth models were fabricated by integrating the patients' intraoral and CBCT scans. The simulated root positions in the virtual setup were obtained by merging the crown in the virtual setup and root in the pre-treatment tooth model. The root positions of the simulated and actual post-treatment tooth models were compared. Results: Differences in root positions between the simulated and actual models were > 1 mm in all teeth, and statistically significant differences were observed (p < 0.05), except for the maxillary lateral incisors. The differences in the inter-root angulation were > 1° in all teeth, and statistically significant differences were observed in the maxillary and mandibular canines. Conclusions: The virtual tooth setup using only crown data showed errors over the clinical limits. The clinical application of a virtual setup using crowns and roots is necessary for accurate and precise treatment simulation, particularly in extraction treatment.

Endodontic micro-resurgery and guided tissue regeneration of a periapical cyst associated to recurrent root perforation: a case report

  • Fernando Cordova-Malca;Hernan Coaguila-Llerena;Lucia Garre-Arnillas;Jorge Rayo-Iparraguirre;Gisele Faria
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.35.1-35.9
    • /
    • 2022
  • Although the success rates of microsurgery and micro-resurgery are very high, the influence of a recurrent perforation combined with radicular cyst remains unclear. A 21-year-old white female patient had a history of root perforation in a previously treated right maxillary lateral incisor. Analysis using cone-beam computed tomography (CBCT) revealed an extensive and well-defined periapical radiolucency, involving the buccal and palatal bone plate. The perforation was sealed with bioceramic material (Biodentine) in the pre-surgical phase. In the surgical phase, guided tissue regeneration (GTR) was performed by combining xenograft (lyophilized bovine bone) and autologous platelet-rich fibrin applied to the bone defect. The root-end preparation was done using an ultrasonic tip. The retrograde filling was performed using a bioceramic material (Biodentine). Histopathological analysis confirmed a radicular cyst. The patient returned to her referring practitioner to continue the restorative procedures. CBCT analysis after 1-year recall revealed another perforation in the same place as the first intervention, ultimately treated by micro-resurgery using the same protocol with GTR, and a bioceramic material (MTA Angelus). The 2-year recall showed healing and bone neoformation. In conclusion, endodontic micro-resurgery with GTR showed long-term favorable results when a radicular cyst and a recurrent perforation compromised the success.