• 제목/요약/키워드: Conductive Ball

검색결과 24건 처리시간 0.024초

Low resistance and low temperature bonding between Silver and Indium

  • Cho, Sung-Il;Yu, Jin;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.275-278
    • /
    • 2002
  • Conductive adhesives are commonly used for the interconnections of fine pitch, small packages like mobile applications. Since conductive particles connect mechanically with contact pads to give somewhat higher contact resistance, a metallurgical interconnection, which provides both fine pitch and low resistance, was studied using silver ball and indium which can be made at low temperatures. The connection resistance of the In-Ag metallurgical interconnection was lower than that of the Ni/Au-Ag mechanical interconnection and the former showed little dependency on the bonding load in contrast to the latter.

  • PDF

탄소 나노 물질의 형상에 따른 구리/탄소나노물질 하이브리드 필러의 전도성 향상 거동 분석 (Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers)

  • 이연주;홍성욱;최현주
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.435-440
    • /
    • 2018
  • In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.

전도성 실버 페이스트의 미세구조 발달에 미치는 glass-frit 크기의 영향 (Influence of Glass-Frit Size on the Microstructural Evolution of Conductive Silver Paste)

  • 한현근;서동석;이종국
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.516-523
    • /
    • 2008
  • The effect of glass-frit size on microstructural evolution and electrical resistance of conductive silver paste was investigated. Silver paste was prepared by mixing 70 wt% commercial silver powder with $1.6{\mu}m$, 3 wt% Bi based glass-frit and 27 wt% organic vehicle. Two different sizes of glass-frit were obtained by ball-milling of commercial glass-frit ($3{\mu}m$) for 3 and 5 days, which had an average particle size of 1.0 and $0.5{\mu}m$. The smaller glass-frit was melt at low sintered temperature and rapidly spread between the silver particles, which is induced the dense networking among silver particles and strong adhesiveness to $Al_2O_3$ substrate. The silver film with smaller glass-frit sintered at $500^{\circ}C$ showed the small pore size and low porosity resulting in low electrical resistivity of $4{\mu}{\Omega}cm$.

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong;Seunghoon, Nam
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.445-453
    • /
    • 2022
  • SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.

나노다이아몬드가 첨가된 윤활제의 마모 특성 연구 (Study on Wear Characteristics of Lubricants with Nano-diamond Additives)

  • 김승택;김승목;박태희;이정석;이영제
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.291-294
    • /
    • 2014
  • Multiple additives can help improve the performance of generally used lubricants. These additives include MoS2, cadmium, chloride, indium, sulfide, and phosphide, which are harmful to both humans and the environment. Thus, researchers in this industry have been trying to reduce the use of these additives by finding alternatives. Nanodiamonds are one of these candidates. Nanodiamond particles are very hard, chemically stable, and highly heat-conductive. This research involved uniformly dispersing nanodiamond particles in marine engine oils via a matrix synthesis method at various concentrations (0, 0.1, 0.3, 0.5, and 1.0 wt). Friction and wear tests involved constant loads on ball-on-disk specimens, where the ball was AISI 51200 steel, the disk was AISI 1020 steel, and the sliding speed was 0.217 m/s. The lowest wear occurred at a suitable concentration of nanodiamonds (0.3 wt). However, excessive amounts of nanodiamonds caused them to act as abrasive debris because of their hardness, which increased the wear amount. The friction coefficient decreased as the nanodiamond concentration increased because their octagonal, almost spherical shape caused them to act as rolling contact elements between two surfaces.

Solderable 이방성 도전성 접착제를 이용한 BGA 접합공정 개발 (Development of BGA Interconnection Process Using Solderable Anisotropic Conductive Adhesives)

  • 임병승;이정일;오승훈;채종이;황민섭;김종민
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper, novel ball grid array (BGA) interconnection process using solderable anisotropic conductive adhesives (SACAs) with low-melting-point alloy (LMPA) fillers have been developed to enhance the processability in the conventional capillary underfill technique and to overcome the limitations in the no-flow underfill technique. To confirm the feasibility of the proposed technique, BGA interconnection test was performed using two types of SACA with different LMPA concentration (0 and 4 vol%). After the interconnection process, the interconnection characteristics such as morphology of conduction path and electrical properties of BGA assemblies were inspected and compared. The results indicated that BGA assemblies using SACA without LMPA fillers showed weak conduction path formation such as solder bump loss or short circuit formation because of the expansion of air bubbles within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SACA with 4 vol% LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the favorable selective wetting behavior of molten LMPAs for the solder bump and Cu metallization.

질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구 (Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings)

  • 강용진;장영준;김종국
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Insulated, Passivated and Adhesively-Promoted Bonding Wire using Al2O3 Nano Coating

  • Soojae Park;Eunmin Cho;Myoungsik Baek;Eulgi Min;Kyujung Choi
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Bonding wires are composed of conductive metals of Au, Ag & Cu with excellent electrical conductivities for transmitting power and signals to wafer chips. Wire metals do not provide electrical insulation, adhesion promoter and corrosion passivation. Adhesion between metal wires is extremely weak, which is responsible for wire cut failures during thermal cycling. Organic coating for electrical insulation does not satisfy bondability and manufacturability, and it is complex to apply very thin organic coating on metal wires. Automotive packages require enhanced reliability of packages under harsh conditions. LED and power packages are susceptible to wire cut failures. Contrary to conventional OCB behaviors, forming gas was not required for free air ball formation for both Ag and Pd-coated Cu wires with Al2O3 passivation.

국산 압축벤토나이트 완충재의 첨가제 혼합을 통한 열전도도 향상 (Increasing of Thermal Conductivity from Mixing of Additive on a Domestic Compacted Bentonite Buffer)

  • 이종표;최희주;최종원;이민수
    • 방사성폐기물학회지
    • /
    • 제11권1호
    • /
    • pp.11-21
    • /
    • 2013
  • 현재 고준위 방사성 폐기물 심층 처분 시스템에서 기본 완충재 물질로서 건조밀도 1.6 g/$cm^3$의 경주산 칼슘 벤토나이트를 사용하고 있으나, 열전도도가 낮은 단점이 있다. 따라서 본 연구에서는 기준 완충재의 열전도율을 0.8 W/mK에서 1.0 W/mK로 향상시키기 위한 목적으로 다양한 첨가제를 다양한 혼합 방법을 통해 배합하고 열전도도를 측정하였다. 첨가제는 CNT(Cabon Nano Tube), Graphite, Alumina, CuO 및 $Fe_2O_3$ 등을 사용하였다. 혼합 방법의 경우, 핸드 믹서기를 통한 건식혼합, 습식 Milling 혼합, 건식 Ball Mill 혼합 등을 실시하였다. Ball Mill 혼합의 경우가 가장 균일하게 혼합되었기 때문에, 값의 편차가 가장 적었고 열전도도 증가율이 가장 좋았다. 지금까지 수행된 시험에서 소량의 고열전도 물질의 첨가로 경주산 칼슘 벤토나이트의 열전도도를 1.0 W/mK 수준으로 용이하게 증가시킬 수 있음을 실험적으로 확인할 수 있었다. 결론적으로, 본 연구에서 제시된 열전도 향상 방법은, 첨가제 혼합이 벤토나이트의 기본 성질인 팽윤압과 수리전도도에 미치는 영향까지 제시된다면, 국내 고준위폐기물 처분장의 개념 설계에 유용하게 활용될 수 있을 것으로 기대된다.

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.57-64
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology fur their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electrodes nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF