Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.6.445

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries  

Sung Joo, Hong (Department of Materials Science and Engineering, College of Engineering, Andong National University)
Seunghoon, Nam (Department of Materials Science and Engineering, College of Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.21, no.6, 2022 , pp. 445-453 More about this Journal
Abstract
SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.
Keywords
$SiO_x$; High-energy ball milling; Li-ion batteries;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 S. Guruvenket, J. M. Hoey, K. J. Anderson, M. T. Frohlich, R. Krishnan, J. Sivaguru, M. P. Sibi and P. Boudjouk, Synthesis of silicon quantum dots using cyclohexasilane (Si6H12), Journal of materials chemistry, C 4, 8206 (2016). Doi: https://doi.org/10.1039/C6TC01435F   DOI
2 M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, X. Feng and H. He, Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres, Journal of Power Sources, 288, 53 (2015). Doi: https://doi.org/ 10.1016/j.jpowsour.2015.04.127   DOI
3 M. Li, Y. Yu, J. Li, B. Chen, A. Konarov and P. Chen, Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithiumion batteries, Journal of Power Sources, 293, 976 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.06.019   DOI
4 Y. Ren and M. Li, Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance, Journal of PowerSources, 306, 459 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2015.12.064   DOI
5 J. Wang, H. Zhao, J. He, C. Wang and J. Wang, Nanosized SiOx/C composite anode for lithium ion batteries, Journal of Power Sources, 196, 4811 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.053   DOI
6 P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries, Electrochimica Acta, 152, 345(2015). Doi: https://doi.org/10.1016/j.electacta.2014.11.149   DOI
7 M. Yamada, A. Ueda, K. Matsumoto and T. Ohzuku, Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: "SiO"-Carbon Composite, Journal of the Electrochemical Society, 158, A417 (2011). Doi: https://doi.org/10.1149/1.3551539   DOI
8 S-W. Park, J. H. Ha, J. M. Park, B. W. Cho, and H.-J. Choi, Enhanced capacity retention based silicon nanosheets electrode by CMC coating for lithium-ion batteries, Electronic Materials Letters, 17, 268 (2021). Doi: https://doi.org/10.1007/s13391-021-00275-y   DOI
9 S. Suh, S. Han, H. Yoon, H. Kim, J. Kang, C. Pak, and H.-J. Kim, Facile one-step fabrication of 3-dimensional SiO2-C electrodes for lithium-ion batteries using a highly porous SBA-15 template and pore-forming agent, Electronic Materials Letters, 18, 197 (2022). Doi: https://doi.org/10.1007/s13391-021-00332-6   DOI
10 J. Hwang, K. Kim, W.-S. Jung, H. Choi, and J.-H. Kim, Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes, Journal of Power Sources, 436, 226883 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.226883   DOI
11 R. Zhan, X. Wang, Z. Chen, Z. W. Seh, L. Wang, and Y. Sun, Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries, Advanced Energy Materials, 11, 2101565 (2021). Doi: https://doi.org/10.1002/aenm.202101565   DOI
12 C. Xu, P. J. Reeves, Q. Jacquet, and C. P. Grey, Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries, Advanced Energy Materials, 11, 2003404 (2021). Doi: https://doi.org/10.1002/aenm.202003404   DOI
13 J. Zheng, Y. Ye, T. Liu, Y. Xiao, C. Wang, F. Wang, and F. Pan, Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control, Accounts of Chemical Research, 52, 2201 (2019). Doi: https://doi.org/10.1021/acs.accounts.9b00033   DOI
14 M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. Stanley Whittingham, Y. Shirley Meng, and A. Van der Ven, Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials, Advanced Energy Materials, 7, 1602888 (2017). Doi: https://doi.org/10.1002/aenm.201602888   DOI
15 T. Ohzuku, Formation of Lithium?Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell, The Journal of the Electrochemical Society, 140, 2490 (1993). Doi: https://doi.org/10.1149/1.2220849   DOI
16 M. N. Obrovac, and V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g   DOI
17 H. Kim, B. Han, J. Choo and J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angewandte Chemie International Edition, 47, 10151 (2008). Doi: https://doi.org/10.1002/ange.200804355   DOI
18 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, 9, 353 (2010). Doi: https://doi.org/10.1038/nmat2725   DOI
19 J. Liu, P. Kopold, P. A. Van Aken, J. Maier and Y. Yu, Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries, Angewandte Chemie International Edition, 54, 9632 (2015). Doi: https://doi.org/10.1002/ange.201503150   DOI
20 M. N. Obrovac, and L. J. Krause, Alloy Design for Lithium-Ion Battery Anodes, The Journal of the Electrochemical Society, 154, A103 (2007). Doi: https://doi.org/10.1149/1.2752985   DOI
21 T. Chen, J. Wu, Q. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, Journal of Power Sources, 363, 126 (2017). Doi: https://doi.org/10.1016/j.jpowsour.2017.07.073   DOI
22 S. M. Schnurre, J. Grobner, and R. Schmid-Fetzer, Thermodynamics and phase stability in the Si-O system, Journal of Non-Crystalline Solids, 336, 1 (2004). Doi: https://doi.org/10.1016/j.jnoncrysol.2003.12.057   DOI
23 K. Alkaabi, D. L. Prasad, P. Kroll, N. W. Ashcroft, and R. Hoffmann, Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous? Journal of the American Chemical Society, 136, 3410 (2014). Doi: https://doi.org/10.1021/ja409692c   DOI
24 H. R. Philipp, Optical properties of non-crystalline Si, SiO, SiOx and SiO2, Journal of Physics and Chemistry of Solids, 32, 1935 (1971). Doi: https://doi.org/10.1016/S0022-3697(71)80159-2   DOI
25 H. R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials, Journal of Non-Crystalline Solids, 8, 627 (1972). Doi: https://doi.org/10.1016/0022-3093(72)90202-5   DOI
26 Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, and L. Mai, Controllable preparation of disproportionated SiOx/C sheets with 3D network as high-performance anode materials of lithium ion battery Chemical Society Reviews, 48, 285 (2019). Doi: https://doi.org/10.1016/j.apsusc.2021.149446   DOI
27 R. J. Temkin, An analysis of the radial distribution function of SIOx, Journal of Non-Crystalline Solids, 17, 215 (1975). Doi: https://doi.org/10.1016/0022-3093(75)90052-6   DOI
28 A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. Tan, T. Fujita, and M. Chen, Atomic-scale disproportionation in amorphous silicon monoxide, ?Nature communications, 7, 11591 (2016). Doi: https://doi.org/10.1038/ncomms11591   DOI
29 A. Hohl, T. Wieder, P. A. Van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess, An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO), Journal of Non-Crystalline Solids, 320, 255 (2003). Doi: https://doi.org/10.1016/S0022-3093(03)00031-0   DOI
30 G. Jeong, J.-H. Kim, Y.-U. Kim, and Y.-J. Kim, Multifunctional TiO2 coating for a SiO anode in Li-ion batteries, Journal of Materials Chemistry, 22, 7999 (2012). Doi: https://doi.org/10.1039/C2JM15677F   DOI
31 Y. Hwa, C.-M. Park, and H.-J. Sohn, Modified SiO as a high performance anode for Li-ion batteries, Journal of Power Sources, 222, 129 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2012.08.060   DOI
32 L. Brewer, and R. K. Edwards, The Stability of SiO Solid and Gas, Journal of Physical Chemistry, 58, 351 (1954). Doi: https://doi.org/10.1021/j150514a015   DOI
33 G. W. Brady, A Study of Amorphous SiO, Journal of Physcial Chemistry, 63, 1119 (1959). Doi: https://doi.org/10.1021/j150577a020   DOI
34 I. Choi, M. J. Lee, S. M. Oh, and J. J. Kim, Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM, Electrochimica. Acta, 85, 369 (2012). Doi: https://doi.org/10.1016/j.electacta.2012.08.098   DOI
35 G. Hass, Preparation, Structure, and Applications of Thin Films of Silicon Monoxide and Titanium Dioxide, Journal of the American Ceramic Society, 33, 353 (1950). Doi: https://doi.org/10.1111/j.1151-2916.1950.tb14151.x   DOI
36 F. A. Costa, A. Silva, J. F. S. Junior, and U. U. Gomes, Composite Ta-Cu powders prepared by high energy milling, International Journal of Refractory Metals and Hard Materials, 26, 499 (2008). Doi: https://doi.org/10.1016/j.ijrmhm.2007.12.002   DOI
37 C.-K. Lin, S.-S. Hong, E and P.-Y. Lee, Formation of NiAl-Al2O3 intermetallic-matrix composite powders by mechanical alloying technique, Intermetallics, 8, 1043 (2000). Doi: https://doi.org/10.1016/S0966-9795(00)00039-X   DOI
38 C. dos Santos Torres and L. Schaeffer, Effect of high energy milling on the microstruture and properties of wcni composite, Materials research, 13, 293 (2010). Doi: https://doi.org/10.1590/S1516-14392010000300004   DOI
39 G. Nallathambi, T. Ramachandran, V. Rajendran, R. Palanivelu, Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics, Materials Research, 14, 552 (2011). Doi: https://doi.org/10.1590/S1516-14392011005000086   DOI
40 B. B. Fernandes, G. Rodrigues, G. C. Coelho, and A. S.Ramos, On iron contamination in mechanically alloyed Cr-Si powders, Materials Science and Engineering A, 405, 135 (2005). Doi: https://doi.org/10.1016/j.msea.2005.06.003   DOI
41 Y. Cao, J. C. Bennett, R. A. Dunlap, and M. N. Obrovac, A Simple Synthesis Route for High-Capacity SiOx Anode Materials with Tunable Oxygen Content for Lithium-Ion Batteries, Chemistry of Materials, 30, 7418 (2018). Doi: https://doi.org/10.1021/acs.chemmater.8b02977   DOI
42 Kim, J. Moon, J. Lee, J.-S. Yu, M. Cho, K. Cho, M.-S. Park, J.-H. Kim, and Y.-J. Kim, Mechanochemically Reduced SiO2 by Ti Incorporation as Lithium Storage Materials, ChemSusChem, 8, 3111 (2015). Doi: https://doi.org/10.1002/cssc.201500638   DOI
43 F. J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, and G. Hollinger, Microscopic structure of the SiO2/Si interface, Physical Review B, 38, 6084 (1988). Doi: https://doi.org/10.1103/PhysRevB.38.6084   DOI