• Title/Summary/Keyword: Condition Prediction Model

Search Result 803, Processing Time 0.026 seconds

Development of Prediction Method for Highway Pavement Condition (포장상태 예측방법 개선에 관한 연구)

  • Park, Sang-Wook;Suh, Young-Chan;Chung, Chul-Gi
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • Prediction the performance of pavement provides proper information to an agency on decision-making process; especially evaluating the pavement performance and prioritizing the work plan. To date, there are a number of approaches to predict the future deterioration of pavements. However, there are some limitation to proper prediction of the pavement service life. In this paper, pavement performance model and pavement condition prediction model are developed in order to improve pavement condition prediction method. The prediction model of pavement condition through the regression analysis of real pavement condition is based on the probability distribution of pavement condition, which set to 5%, 15%, 25% and 50%, by condition of the pavement and traffic volume. The pavement prediction model presented from the behavior of individual pavement condition which are set to 5%, 15%, 25% and 50% of probability distribution. The performance of the prediction model is evaluated from analyzing the average, standard deviation of HPCI, and the percentage of HPCI which is lower than 3.0 of comparable section. In this paper, we will suggest the more rational method to determine the future pavement conditions, including the probabilistic duration and deterministic modeling methods regarding the impact of traffic volume, age, and the type of the pavement.

  • PDF

A Study on Square Pore Shape Discrimination Model of Scaffold Using Machine Learning Based Multiple Linear Regression (다중 선형 회귀 기반 기계 학습을 이용한 인공지지체의 사각 기공 형태 진단 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.59-64
    • /
    • 2020
  • In this paper, we found the solution using data based machine learning regression method to check the pore shape, to solve the problem of the experiment quantity occurring when producing scaffold with the 3d printer. Through experiments, we learned secured each print condition and pore shape. We have produced the scaffold from scaffold pore shape defect prediction model using multiple linear regression method. We predicted scaffold pore shapes of unsecured print condition using the manufactured scaffold pore shape defect prediction model. We randomly selected 20 print conditions from various predicted print conditions. We print scaffold five times under same print condition. We measured the pore shape of scaffold. We compared printed average pore shape with predicted pore shape. We have confirmed the prediction model precision is 99 %.

IMPROVING RELIABILITY OF BRIDGE DETERIORATION MODEL USING GENERATED MISSING CONDITION RATINGS

  • Jung Baeg Son;Jaeho Lee;Michael Blumenstein;Yew-Chaye Loo;Hong Guan;Kriengsak Panuwatwanich
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.700-706
    • /
    • 2009
  • Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.

  • PDF

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

Decision of Optimum Grinding Condition by Pass Schedule Change (열간압연 스케줄변경에 따른 최적연삭조건 결정)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2008
  • It is important to prevent roll failure in hot rolling process for reducing maintenance cost and production loss. The relationship between rolling pass schedule and the work roll wear profile will be presented. The roll wear pattern is related with roll catastrophic failure. The irregular and deep roll wear pattern should be removed by On-line Roll Grinder(ORG) for roll failure prevention. In this study, a computer roll wear prediction model under real process working condition is developed and evaluated with hot rolling pass schedule. The method of building wear calculation functions for center portion abrasion and marginal abrasion respectively was used to develop a work roll wear prediction mathematical model. The three type rolling schedule are evaluated by wear prediction model. The optimum roll grinding methods is suggested for schedule tree rolling technique.

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method (머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

A Study on The Curvature Extrusion for Al Bumper Beam (알루미늄 범퍼 빔 곡률압출공정에 관한 연구)

  • Lee, S.K.;Kim, B.M.;Oh, K.H.;Park, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.42-45
    • /
    • 2008
  • Recently, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded products are used for the design of automotive frame parts. This study focuses on the determination of process condition fur automotive bumper beam with various curvatures. In this study, a curvature prediction model has been proposed considering the geometric relationship and the characteristic of the curvature extrusion equipment. Using the proposed model and FE analysis, the appropriated process condition was determined to produce the bumper beam. Finally, curvature extrusion experiment was carried out to verify the effectiveness of the proposed curvature prediction model and the process condition.

  • PDF

Assisted GNSS Positioning for Urban Navigation Based on Receiver Clock Bias Estimation and Prediction Using Improved ARMA Model

  • Xia, Linyuan;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.395-400
    • /
    • 2006
  • Among the various error sources in positioning and navigation, the paper focuses on the modeling and prediction of receiver clock bias and then tries to achieve positioning based on simulated and predicted clock bias. With the SA off, it is possible to model receiver clock bias more accurately. We selected several types of GNSS receivers for test using ARMA model. To facilitate prediction with short and limited sample pseudorange observations, AR and ARMA are compared, and the improved AR model is presented to model and predict receiver clock bias based on previous solutions. Our work extends to clock bias prediction and positioning based on predicted clock bias using only 3 satellites that is usually the case under urban canyon situation. In contrast to previous experiences, we find that a receiver clock bias can be well modeled using adopted ARMA model. Test has been done on various types of GNSS receivers to show the validation of developed model. To further develop this work, we compare solution conditions in terms of DOP values when point positioning is conducted using 3 satellites to simulate urban positioning environment. When condition allows, height component is derived from other ways and can be set as known values. Given this condition, location is possible using less than 2 GNSS satellites with fixed height. Solution condition is also discussed for this background using mode of constrained positioning. We finally suggest an effective predictive time span based on our test exploration under varied conditions.

  • PDF